Startseite Weak and strong boundedness for p-adic fractional Hausdorff operator and its commutator
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Weak and strong boundedness for p-adic fractional Hausdorff operator and its commutator

  • Naqash Sarfraz und Ferit Gürbüz ORCID logo EMAIL logo
Veröffentlicht/Copyright: 2. August 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, the boundedness of the Hausdorff operator on weak central Morrey space is obtained. Furthermore, we investigate the weak bounds of the p-adic fractional Hausdorff operator on weighted p-adic weak Lebesgue spaces. We also obtain the sufficient condition of commutators of the p-adic fractional Hausdorff operator by taking symbol function from Lipschitz spaces. Moreover, strong type estimates for fractional Hausdorff operator and its commutator on weighted p-adic Lorentz spaces are also acquired.

MSC 2010: 42B35; 26D15; 46B25; 47G10

Corresponding author: Ferit Gürbüz, Department of Mathematics, Kırklareli University, Kırklareli 39100, Turkey, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] I. V. Vladimirov, I. V. Volovich, and E. I. Zelenov, p-Adic Analysis and Mathematical Physics, Singapore, World Scientific, 1994.10.1142/1581Suche in Google Scholar

[2] A. V. Avestisov, A. H. Bikulov, and V. A. Osipov, “p-Adic description of Characterization relaxation in complex system,” J. Phys. A Math. Gen., vol. 36, pp. 4239–4246, 2003.10.1088/0305-4470/36/15/301Suche in Google Scholar

[3] A. V. Avestisov, A. H. Bikulov, S. V. Kozyrev, and V. A. Osipov, “Application of p-adic analysis to models of spontaneous breaking of replica symmetry,” J. Phys. Math. Gen., vol. 32, pp. 8785–8791, 1999.10.1088/0305-4470/32/50/301Suche in Google Scholar

[4] A. V. Avestisov, A. H. Bikulov, S. V. Kozyrev, and V. A. Osipov, “p-Adic models of ultrametric diffusion constrained by hierarchical energy landscape,” J. Phys. Math. Gen., vol. 35, pp. 177–189, 2002.10.1088/0305-4470/35/2/301Suche in Google Scholar

[5] I. Y. Arefeva, B. Dragovich, P. Frampton, and I. V. Volovich, “The wave function of the universe and p-Adic gravity,” Mod. Phys. Lett. A, vol. 6, pp. 4341–4358, 1991.10.1142/S0217751X91002094Suche in Google Scholar

[6] D. Dubischar, V. M. Gundlach, O. Steinkamp, and A. Khrennikov, “A p-adic model for the process of thinking disturbed by physiological and information noise,” J. Theor. Biol., vol. 197, no. 4, pp. 451–467, 1999. https://doi.org/10.1006/jtbi.1998.0887.Suche in Google Scholar PubMed

[7] G. Parisi and N. Sourlas, “p-Adic numbers and replica symmetry break,” Eur. J. Phys. B., vol. 14, pp. 535–542, 2000. https://doi.org/10.1007/s100510051063.Suche in Google Scholar

[8] V. S. Vladimirov and I. V. Volovich, “p-Adic quantum mechanics,” Commun. Math. Phys., vol. 123, pp. 659–676, 1989. https://doi.org/10.1007/bf01218590.Suche in Google Scholar

[9] A. N. Kochubei, “Stochastic integrals and stochastic differential equations over the field of p-Adic numbers,” Potential Anal., vol. 6, pp. 105–125, 1997.Suche in Google Scholar

[10] S. Haran, “Analytic potential theory over the p- adics,” Ann. Inst. Fourier, vol. 43, pp. 905–944, 1993. https://doi.org/10.5802/aif.1361.Suche in Google Scholar

[11] S. Haran, “Riesz potential and explicit sums in arithmetic,” Invent Math., vol. 101, pp. 697–703, 1990. https://doi.org/10.1007/bf01231521.Suche in Google Scholar

[12] A. Hussain, Sarfraz, I. Khan, and A. M. Alqahtani, “Estimates for commutators of bilinear fractional p-adic Hardy operator on Herz-type spaces,” J. Funct. Spaces Appl., vol. 2021, p. 7, 2021, Art no. 6615604. https://doi.org/10.1155/2021/6615604.Suche in Google Scholar

[13] A. Hussain, N. Sarfraz, and F. Gürbüz, Sharp Weak Bounds for p-Adic Hardy Operators on p-Adic Linear Spaces, 2020, arXiv: 2002.08045.Suche in Google Scholar

[14] S. V. Kozyrev, “Methods and applications of ultrametric and p-adic analysis: from wavelet theory to biophysics,” Proc. Steklov Inst. Math., vol. 274, pp. 1–84, 2011. https://doi.org/10.1134/s0081543811070017.Suche in Google Scholar

[15] N. Sarfraz, N. Filali, A. Hussain, and F. Jarad, “Weighted estimates for commutator of rough p-adic fractional Hardy operator on weighted p-adic Herz- Morrey spaces,” J. Mat., vol. 2021, p. 14, 2021, Art no. 5559815. https://doi.org/10.1155/2021/5559815.Suche in Google Scholar

[16] N. Sarfraz and A. Hussain, “Estimates for commutators of p-adic Hausdorff operator on Herz-Morrey spaces,” Mathematics, vol. 7, no. 2, p. 127, 2019. https://doi.org/10.3390/math7020127.Suche in Google Scholar

[17] K. F. Andersen, “Boundedness of Hausdorff operator on Lp(Rn)${L}^{p}({\mathbb{R}}^{n})$, H1(Rn)${H}^{1}({\mathbb{R}}^{n})$ and BMO(Rn)$BMO({\mathbb{R}}^{n})$,” Acta Sci. Math., vol. 69, pp. 409–418, 2003.Suche in Google Scholar

[18] A. K. Lerner and E. Liflyand, “Multidimensional Hausdorff operators on the real Hardy space,” Acta Sci. Math., vol. 83, pp. 79–86, 2007. https://doi.org/10.1017/s1446788700036399.Suche in Google Scholar

[19] A. Ajaib and A. Hussain, “Weighted CBMO estimates for commutators of matrix Hausdorff operator on the Heisenberg group,” Open Math., vol. 18, pp. 496–511, 2020. https://doi.org/10.1515/math-2020-0175.Suche in Google Scholar

[20] V. I. Burenkov and E. Liflyand, “Hausdorff operators on Morrey-type spaces,” Kyoto J. Math., vol. 60, no. 1, pp. 93–106, 2020. https://doi.org/10.1215/21562261-2019-0035.Suche in Google Scholar

[21] V. I. Burenkov and E. Liflyand, “On the boundedness of Hausdorff operators on Morrey-Herz spaces,” Eurasian Math. J., vol. 8, no. 2, pp. 97–104, 2017.Suche in Google Scholar

[22] J. Chen, J. Dai, D. Fan, and X. Zhu, “Boundedness of Hausdorff operators on Lebesgue spaces and Hardy spaces,” Sci. China Math., vol. 61, pp. 1647–1664, 2018. https://doi.org/10.1007/s11425-017-9246-7.Suche in Google Scholar

[23] J. Chen, D. Fan, and J. Li, “Hausdorff operator on function spaces,” Chin. Ann. Math., vol. 33, pp. 537–556, 2012. https://doi.org/10.1007/s11401-012-0724-1.Suche in Google Scholar

[24] J. Chen, S. Y. He, and X. Zhu, “Boundedness of Hausdorff operators on the power weighted Hardy spaces,” Appl. Math. J. Chin. Univ., vol. 32, no. 4, pp. 462–476, 2017. https://doi.org/10.1007/s11766-017-3523-3.Suche in Google Scholar

[25] G. Gao, X. Wu, A. Hussain, and G. Zhao, “Some estimates of Hausdorff operators,” J. Math. Inequalities, vol. 9, no. 3, pp. 641–651, 2015. https://doi.org/10.7153/jmi-09-54.Suche in Google Scholar

[26] K.-P. Ho, “Dilation operators and integral operators on amalgon spaces (Lp, lp),” Ricerche Matemat., vol. 68, pp. 661–677, 2019. https://doi.org/10.1007/s11587-019-00431-5.Suche in Google Scholar

[27] A. Hussain and A. Ajaib, “Some weighted inequalities for Hausdorff operators and commutators,” J. Inequalities Appl., vol. 2018, p. 19, 2018. https://doi.org/10.1186/s13660-017-1588-4.Suche in Google Scholar PubMed PubMed Central

[28] A. Hussain and A. Ajaib, “Some results for commutators of generalized Hausdorff operator,” J. Math. Inequalities, vol. 13, no. 4, pp. 1129–1146, 2019. https://doi.org/10.7153/jmi-2019-13-80.Suche in Google Scholar

[29] A. Hussain and G. Gao, “Some new estimates for the commutators of n-dimensional Hausdorff operator,” Appl. Math., vol. 29, pp. 139–150, 2014. https://doi.org/10.1007/s11766-014-3169-3.Suche in Google Scholar

[30] A. Hussain and G. Gao, “Multidimensional Hausdorff operators and commutators on Herz-type spaces,” J. Inequalities Appl., vol. 2013, p. 594, 2013. https://doi.org/10.1186/1029-242x-2013-594.Suche in Google Scholar

[31] A. Hussain and N. Sarfraz, “The Hausdorff operator on weighted p-adic Morrey and Herz type spaces,” P-Adic Numbers Ultrametric Anal. Appl., vol. 11, pp. 151–162, 2019. https://doi.org/10.1134/s2070046619020055.Suche in Google Scholar

[32] E. Liflyand and A. Miyachi, “Boundedness of multidimensional Hausdorff operator in Hp spaces, 0 < p < 1,” Trans. Am. Math. Soc., vol. 371, pp. 4793–4814, 2019.10.1090/tran/7572Suche in Google Scholar

[33] J. Ruan, D. Fan, and Q. Wu, “Weighted Morrey estimates for Hausdorff operators and its commutator on the Heisenberg group,” Math. Inequalities Appl., vol. 22, no. 1, pp. 303–329, 2019.10.7153/mia-2019-22-24Suche in Google Scholar

[34] X. Lin and L. Sun, “Some estimates on the Hausdorff operator,” Acta Sci. Math., vol. 78, pp. 669–681, 2012.10.1007/BF03651391Suche in Google Scholar

[35] D. S. Fan and F. Y. Zhao, “Multilinear fractional Hausdorff operators,” Acta Math. Sin., vol. 30, pp. 1407–1421, 2014. https://doi.org/10.1007/s10114-014-3552-2.Suche in Google Scholar

[36] G. Gao and F. Zhao, “Sharp weak bounds for Hausdorff operators,” Anal. Math., vol. 41, pp. 163–173, 2015. https://doi.org/10.1007/s10476-015-0204-4.Suche in Google Scholar

[37] J. Chen, D. Fan, and J. Ruan, “The fractional Hausdorff operator on Hardy spaces Hp(Rn)${H}^{p}({\mathbb{R}}^{n})$,” Anal. Math., vol. 42, pp. 1–17, 2016. https://doi.org/10.1007/s10476-016-0101-5.Suche in Google Scholar

[38] F. Gao, X. Hu, and C. Zhong, “Sharp weak estimates for Hardy-type operators,” Ann. Funct. Anal., vol. 7, no. 3, pp. 421–433, 2016. https://doi.org/10.1215/20088752-3605447.Suche in Google Scholar

[39] Y. Haixia and L. Junferg, “Sharp weak estimates for n-dimensional fractional Hardy Operators,” Front. Math. China, vol. 13, no. 2, pp. 449–457, 2018.10.1007/s11464-018-0685-0Suche in Google Scholar

[40] A. Hussain and N. Sarfraz, “Optimal weak type estimates for p-Adic Hardy operator,” P-Adic Numbers Ultrametric Anal. Appl., vol. 12, no. 1, pp. 12–21, 2020. https://doi.org/10.1134/s2070046620010033.Suche in Google Scholar

[41] Q. Y. Wu and Z. W. Fu, “Weighted p-Adic Hardy operators and their commutators on p-adic central Morrey spaces,” Bull. Malaysian Math. Sci. Soc., vol. 40, pp. 635–654, 2015.10.1007/s40840-017-0444-5Suche in Google Scholar

[42] Q. Y. Wu and Z. W. Fu, “Hardy-Littlewood-Sobolev inequalities on p-adic central Morrey spaces,” J. Funct. Spaces, vol. 2015, p. 7, 2015, Art no. 419532. https://doi.org/10.1155/2015/419532.Suche in Google Scholar

Received: 2020-12-23
Revised: 2021-06-16
Accepted: 2021-07-20
Published Online: 2021-08-02

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Original Research Articles
  3. Frequency responses for induced neural transmembrane potential by electromagnetic waves (1 kHz to 1 GHz)
  4. Investigating existence results for fractional evolution inclusions with order r ∈ (1, 2) in Banach space
  5. Optimal control of non-instantaneous impulsive second-order stochastic McKean–Vlasov evolution system with Clarke subdifferential
  6. Generalized forms of fractional Euler and Runge–Kutta methods using non-uniform grid
  7. Controllability of coupled fractional integrodifferential equations
  8. A new generalized approach to study the existence of solutions of nonlinear fractional boundary value problems
  9. Rational soliton solutions in the nonlocal coupled complex modified Korteweg–de Vries equations
  10. Buoyancy driven flow characteristics inside a cavity equiped with diamond elliptic array
  11. Analysis and numerical effects of time-delayed rabies epidemic model with diffusion
  12. Two occurrences of fractional actions in nonlinear dynamics
  13. Multiwave interaction solutions for a (3 + 1)-dimensional B-type Kadomtsev–Petviashvili equation in fluid dynamics
  14. Effects of mixed time delays and D operators on fixed-time synchronization of discontinuous neutral-type neural networks
  15. Solvability and stability of nonlinear hybrid ∆-difference equations of fractional-order
  16. Weak and strong boundedness for p-adic fractional Hausdorff operator and its commutator
  17. Simulation and modeling of different cell shapes for closed-cell LM-13 alloy foam for compressive behavior
  18. Pandemic management by a spatio–temporal mathematical model
  19. Adaptive ADI difference solution of quenching problems based on the 3D convection–reaction–diffusion equation
  20. Null controllability of Hilfer fractional stochastic integrodifferential equations with noninstantaneous impulsive and Poisson jump
  21. Application of modified Mickens iteration procedure to a pendulum and the motion of a mass attached to a stretched elastic wire
  22. Modeling the spatiotemporal intracellular calcium dynamics in nerve cell with strong memory effects
  23. Switched coupled system of nonlinear impulsive Langevin equations involving Hilfer fractional-order derivatives
  24. Improving the dynamic behavior of the plate under supersonic air flow by using nonlinear energy sink
Heruntergeladen am 27.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijnsns-2020-0290/pdf
Button zum nach oben scrollen