Startseite Multiwave interaction solutions for a (3 + 1)-dimensional B-type Kadomtsev–Petviashvili equation in fluid dynamics
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Multiwave interaction solutions for a (3 + 1)-dimensional B-type Kadomtsev–Petviashvili equation in fluid dynamics

  • Wenying Cui , Yinping Liu EMAIL logo und Zhibin Li
Veröffentlicht/Copyright: 17. August 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, a (3 + 1)-dimensional B-type Kadomtsev–Petviashvili (BKP) equation is investigated and its various new interaction solutions among solitons, rational waves and periodic waves are obtained by the direct algebraic method, together with the inheritance solving technique. The results are fantastic interaction phenomena, and are shown by figures. Meanwhile, any higher order interaction solutions among solitons, breathers, and lump waves are constructed by an N-soliton decomposition algorithm developed by us. These innovative results greatly enrich the structure of the solutions of this equation.

MSC 2010: 35C80; 47K40

Corresponding author: Yinping Liu, Mathematical Sciences, Shanghai Key Laboratory of PMMP, East China Normal University, Shanghai 200241, P. R. China, E-mail:

Award Identifier / Grant number: 19ZR1414000

Award Identifier / Grant number: 18dz2271000

Award Identifier / Grant number: 11871328

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The work is supported by the National Natural Science Foundation of China (No. 11871328), Shanghai Natural Science Foundation (No. 19ZR1414000), and is supported in part by Science and Technology Commission of Shanghai Municipality (No. 18dz2271000).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] M. Eslami and M. Mirzazadeh, “Optical solitons with Biswas–Milovic equation for power law and dual-power law nonlinearities,” Nonlinear Dynam., vol. 83, nos. 1–2, pp. 731–738, 2016. https://doi.org/10.1007/s11071-015-2361-1.Suche in Google Scholar

[2] A. M. Kamchatnov, “Wave breaking in dispersive fluid dynamics of the Bose-Einstein condensate,” J. Exp. Theor. Phys., vol. 127, no. 5, pp. 903–911, 2018. https://doi.org/10.1134/s1063776118110043.Suche in Google Scholar

[3] A. I. Smolyakov, “Nonlinear evolution of tearing modes in inhomogeneous plasmas,” Plasma Phys. Contr. Fusion, vol. 35, no. 6, pp. 657–687, 1993. https://doi.org/10.1088/0741-3335/35/6/002.Suche in Google Scholar

[4] S. J. Chen, W. X. Ma, and X. Lü, “Bäcklund transformation, exact solutions and interaction behaviour of the (3+ 1)-dimensional Hirota-Satsuma-Ito-like equation,” Commun. Nonlinear Sci. Numer. Simulat., vol. 83, p. 105135, 2020. https://doi.org/10.1016/j.cnsns.2019.105135.Suche in Google Scholar

[5] G. Q. Xu and A. M. Wazwaz, “Integrability aspects and localized wave solutions for a new (4+1)-dimensional Boiti-Leon-Manna-Pempinelli equation,” Nonlinear Dynam., vol. 98, no. 2, pp. 1379–1390, 2019. https://doi.org/10.1007/s11071-019-05269-y.Suche in Google Scholar

[6] J. Manafian, M. A. S. Murad, A. Alizadeh, and S. Jafarmadar, “M-lump, interaction between lumps and stripe solitons solutions to the (2+1)-dimensional KP-BBM equation,” Eur. Phys. J. Plus, vol. 135, no. 2, p. 167, 2020. https://doi.org/10.1140/epjp/s13360-020-00109-0.Suche in Google Scholar

[7] W. X. Ma, “Lump and interaction solutions to linear (4+1)-dimensional PDEs,” Acta Math. Sci., vol. 39, no. 2, pp. 498–508, 2019. https://doi.org/10.1007/s10473-019-0214-6.Suche in Google Scholar

[8] H. D. Guo, T. C. Xia, and B. B. Hu, “Dynamics of abundant solutions to the (3+1)-dimensional generalized Yu-Toda-Sasa-Fukuyama equation,” Appl. Math. Lett., vol. 105, p. 106301, 2020. https://doi.org/10.1016/j.aml.2020.106301.Suche in Google Scholar

[9] G. Q. Xu, “Painlevé analysis, lump-kink solutions and localized excitation solutions for the (3+1)-dimensional Boiti-Leon-Manna-Pempinelli equation,” Appl. Math. Lett., vol. 97, pp. 81–87, 2019. https://doi.org/10.1016/j.aml.2019.05.025.Suche in Google Scholar

[10] Q. L. Zha, “A symbolic computation approach to constructing rogue waves with a controllable center in the nonlinear systems,” Comput. Math. Appl., vol. 75, no. 9, pp. 3331–3342, 2018. https://doi.org/10.1016/j.camwa.2018.02.001.Suche in Google Scholar

[11] J. G. Liu, “Lump-type solutions and interaction solutions for the (2+1)-dimensional asymmetrical Nizhnik-Novikov-Veselov equation,” Eur. Phys. J. Plus, vol. 134, no. 2, pp. 1–6, 2019. https://doi.org/10.1140/epjp/i2019-12470-0.Suche in Google Scholar

[12] W. Li and Y. P. Liu, “To construct lumps, breathers and interaction solutions of arbitrary higher-order for a (4+1)-dimensional Fokas equation,” Mod. Phys. Lett. B, vol. 34, no. 21, p. 2050221, 2020. https://doi.org/10.1142/s0217984920502218.Suche in Google Scholar

[13] G. Q. Xu and A. M. Wazwaz, “Characteristics of integrability, bidirectional solitons and localized solutions for a (3+1)-dimensional generalized breaking soliton equation,” Nonlinear Dynam., vol. 96, no. 3, pp. 1989–2000, 2019. https://doi.org/10.1007/s11071-019-04899-6.Suche in Google Scholar

[14] D. Zhao and Zhaqilao, “On the role of K+ L+ M-wave mixing effect in the (2+1)-dimensional KP I equation,” Eur. Phys. J. Plus, vol. 136, no. 4, pp. 1–9, 2021. https://doi.org/10.1140/epjp/s13360-021-01372-5.Suche in Google Scholar

[15] W. Zijia and Zhaqilao, “The interaction among kink, breather and lump in the (2+1)-dimensional completely generalized Hirota-Satsuma-Ito equation,” Phys. Scripta, vol. 96, no. 3, p. 035202, 2020. https://doi.org/10.1088/1402-4896/abd361.Suche in Google Scholar

[16] D. Zhao and Zhaqilao, “Three-wave interactions in a more general (2+1)-dimensional Boussinesq equation,” Eur. Phys. J. Plus, vol. 135, no. 8, pp. 1–16, 2020. https://doi.org/10.1140/epjp/s13360-020-00629-9.Suche in Google Scholar

[17] E. Date, M. Jimbo, M. Kashiwara, and T. Miwa, “Transformation groups for soliton equations IV. A new hierarchy of soliton equations of KP-type,” Phys. Nonlinear Phenom., vol. 4, no. 3, pp. 343–365, 1982. https://doi.org/10.1016/0167-2789(82)90041-0.Suche in Google Scholar

[18] H. F. Shen and M. H. Tu, “On the constrained B-type Kadomtsev–Petviashvili hierarchy: Hirota bilinear equations and Virasoro symmetry,” J. Math. Phys., vol. 52, no. 3, pp. 164–119, 2011. https://doi.org/10.1063/1.3559081.Suche in Google Scholar

[19] A. M. Wazwaz, “Two B-type Kadomtsev–Petviashvili equations of (2+1) and (3+1) dimensions: multiple soliton solutions, rational solutions and periodic solutions,” Comput. Fluids, vol. 86, pp. 357–362, 2013. https://doi.org/10.1016/j.compfluid.2013.07.028.Suche in Google Scholar

[20] J. M. Tu, S. F. Tian, M. J. Xu, et al.., “On periodic wave solutions with asymptotic behaviors to a (3+1)-dimensional generalized B-type Kadomtsev-Petviashvili equation in fluid dynamics,” Comput. Math. Appl., vol. 72, no. 9, pp. 2486–2504, 2016. https://doi.org/10.1016/j.camwa.2016.09.003.Suche in Google Scholar

[21] X. Y. Wu, B. Tian, H. P. Chai, et al.., “Rogue waves and lump solutions for a (3+1)-dimensional generalized B-type Kadomtsev-Petviashvili equation in fluid mechanics,” Mod. Phys. Lett. B, vol. 31, no. 22, p. 1750122, 2017. https://doi.org/10.1142/s0217984917501226.Suche in Google Scholar

[22] C. C. Hu, B. Tian, X. Yu. Wu, et al.., “Lump wave-soliton and rogue wave-soliton interactions for a (3+1)-dimensional B-type Kadomtsev–Petviashvili equation in a fluid,” Chin. J. Phys., vol. 56, no. 5, pp. 2395–2403, 2018. https://doi.org/10.1016/j.cjph.2018.06.021.Suche in Google Scholar

[23] X. W. Yan, S. F. Tian, X. B. Wang, et al.., “Solitons to rogue waves transition, lump solutions and interaction solutions for the (3+1)-dimensional generalized B-type Kadomtsev–Petviashvili equation in fluid dynamics,” Int. J. Comput. Math., vol. 96, no. 9, pp. 1839–1848, 2019. https://doi.org/10.1080/00207160.2018.1535708.Suche in Google Scholar

[24] W. Y. Cui, W. Li, and Y. P. Liu, “Multiwave interaction solutions for a (3+1)-dimensional nonlinear evolution equation,” Nonlinear Dynam., vol. 101, no. 2, pp. 1–11, 2020. https://doi.org/10.1007/s11071-020-05809-x.Suche in Google Scholar

[25] S. Y. Lou and J. Lin, “Rogue waves in nonintegrable KdV-type systems,” Chin. Phys. Lett., vol. 35, no. 5, p. 050202, 2018. https://doi.org/10.1088/0256-307x/35/5/050202.Suche in Google Scholar

[26] R. Hirota, The Direct Method in Soliton Theory, vol. 155, New York, Cambridge University Press, 2004.10.1017/CBO9780511543043Suche in Google Scholar

[27] J. Satsuma and M. J. Ablowitz, “Two-dimensional lumps in nonlinear dispersive systems,” J. Math. Phys., vol. 20, no. 7, pp. 1496–1503, 1979. https://doi.org/10.1063/1.524208.Suche in Google Scholar

Received: 2020-12-09
Accepted: 2021-07-20
Published Online: 2021-08-17

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Original Research Articles
  3. Frequency responses for induced neural transmembrane potential by electromagnetic waves (1 kHz to 1 GHz)
  4. Investigating existence results for fractional evolution inclusions with order r ∈ (1, 2) in Banach space
  5. Optimal control of non-instantaneous impulsive second-order stochastic McKean–Vlasov evolution system with Clarke subdifferential
  6. Generalized forms of fractional Euler and Runge–Kutta methods using non-uniform grid
  7. Controllability of coupled fractional integrodifferential equations
  8. A new generalized approach to study the existence of solutions of nonlinear fractional boundary value problems
  9. Rational soliton solutions in the nonlocal coupled complex modified Korteweg–de Vries equations
  10. Buoyancy driven flow characteristics inside a cavity equiped with diamond elliptic array
  11. Analysis and numerical effects of time-delayed rabies epidemic model with diffusion
  12. Two occurrences of fractional actions in nonlinear dynamics
  13. Multiwave interaction solutions for a (3 + 1)-dimensional B-type Kadomtsev–Petviashvili equation in fluid dynamics
  14. Effects of mixed time delays and D operators on fixed-time synchronization of discontinuous neutral-type neural networks
  15. Solvability and stability of nonlinear hybrid ∆-difference equations of fractional-order
  16. Weak and strong boundedness for p-adic fractional Hausdorff operator and its commutator
  17. Simulation and modeling of different cell shapes for closed-cell LM-13 alloy foam for compressive behavior
  18. Pandemic management by a spatio–temporal mathematical model
  19. Adaptive ADI difference solution of quenching problems based on the 3D convection–reaction–diffusion equation
  20. Null controllability of Hilfer fractional stochastic integrodifferential equations with noninstantaneous impulsive and Poisson jump
  21. Application of modified Mickens iteration procedure to a pendulum and the motion of a mass attached to a stretched elastic wire
  22. Modeling the spatiotemporal intracellular calcium dynamics in nerve cell with strong memory effects
  23. Switched coupled system of nonlinear impulsive Langevin equations involving Hilfer fractional-order derivatives
  24. Improving the dynamic behavior of the plate under supersonic air flow by using nonlinear energy sink
Heruntergeladen am 30.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijnsns-2020-0275/html
Button zum nach oben scrollen