Startseite Technik Application of modified Mickens iteration procedure to a pendulum and the motion of a mass attached to a stretched elastic wire
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Application of modified Mickens iteration procedure to a pendulum and the motion of a mass attached to a stretched elastic wire

  • Amin Gholami , Davood D. Ganji , Hadi Rezazadeh , Waleed Adel und Ahmet Bekir ORCID logo EMAIL logo
Veröffentlicht/Copyright: 2. August 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The paper deals with the application of a strong method called the modified Mickens iteration technique which is used for solving a strongly nonlinear system. The system describes the motion of a simple mathematical pendulum with a particle attached to it through a stretched wire. This model has great applications especially in the area of nonlinear vibrations and oscillation systems. The proposed method depends on determining the frequency and amplitude of the system through the modified Mickens iterative approach which is a modification of the regular Mickens approach. The preliminaries of the proposed technique are present and the application to the model is discussed. The method depends on the Mickens iteration approach which transforms the considered equation into a linear form and then is solving this equation result in the approximate solution. Some examples are given to validate and illustrate the effectiveness and convenience of the method. These results are compared with other relative techniques from the literature in terms of finding the frequency of the two examined models. The method produces more accurate results when compared to these methods and is considered a strong candidate for solving other nonlinear problems with applications in science and engineering.


Corresponding author: Ahmet Bekir, Neighbourhood of Akcaglan, Imarli Street, Number: 28/4, 26030, Eskisehir, Türkiye, E-mail:

Acknowledgment

The authors would like to thank the anonymous reviewers for their valuable comments.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: Not applicable.

  3. Conflict of interest statement: The authors declare that they have no conflict of interest.

References

[1] M. Bayat, I. Pakar, and M. Bayat, “Nonlinear vibration of multi-body systems with linear and nonlinear springs,” Steel Compos. Struct., vol. 25, no. 4, pp. 497–503, 2017.Suche in Google Scholar

[2] I. Pakar, M. Bayat, and L. Cveticanin, “Nonlinear vibration of unsymmetrical laminated composite beam on elastic foundation,” Steel Compos. Struct., vol. 26, no. 4, pp. 453–461, 2018.Suche in Google Scholar

[3] M. Bayat, I. Pakar, H. R. Ahmadi, M. Cao, and A. H. Alavi, “Structural health monitoring through nonlinear frequency-based approaches for conservative vibratory systems,” Struct. Eng. Mech., vol. 73, no. 3, pp. 331–337, 2020.Suche in Google Scholar

[4] M. Javanmard, M. Bayat, and A. Ardakani, “Nonlinear vibration of Euler-Bernoulli beams resting on linear elastic foundation,” Struct. Eng. Mech., vol. 15, no. 4, pp. 439–449, 2013. https://doi.org/10.12989/scs.2013.15.4.439.Suche in Google Scholar

[5] A. V. Shapovalov and A. Yu Trifonov, “Adomian decomposition method for the one-dimensional nonlocal Fisher-Kolmogorov-Petrovsky-Piskunov equation,” Russ. Phys. J., pp. 1–10, 2019. https://doi.org/10.1007/s11182-019-01768-y.Suche in Google Scholar

[6] S. Chakraverty, N. Mahato, P. Karunakar, and T. D. Rao, Adomian Decomposition Method, Hoboken, USA, Wiley, 2019.Suche in Google Scholar

[7] J. H. He, “Variational iteration method: a kind of nonlinear analytical technique: some examples,” Int. J. Non Lin. Mech., vol. 34, no. 4, pp. 699–708, 1999. https://doi.org/10.1016/s0020-7462(98)00048-1.Suche in Google Scholar

[8] D. D. Ganji, H. Tari, and H. Babazadeh, “The application of He’s variational iteration method to nonlinear equations arising in heat transfer,” Phys. Lett., vol. 363, no. 3, pp. 213–217, 2007.10.1016/j.physleta.2006.11.005Suche in Google Scholar

[9] A. M. Wazwaz, “The variational iteration method for solving linear and nonlinear ODEs and scientific models with variable coefficients,” Cent. Eur. J. Eng., vol. 4, no. 1, pp. 64–71, 2014. https://doi.org/10.2478/s13531-013-0141-6.Suche in Google Scholar

[10] H. Tari, “Modified variational iteration method,” Phys. Lett., vol. 369, pp. 290–293, 2007. https://doi.org/10.1016/j.physleta.2007.04.090.Suche in Google Scholar

[11] J. H. He, “Variational iteration method some recent results and new interpretations,” J. Comput. Appl. Math., vol. 207, pp. 3–17, 2007. https://doi.org/10.1016/j.cam.2006.07.009.Suche in Google Scholar

[12] M. Rafei, D. D. Ganji, and H. Daniali, “Solution of the epidemic model by homotopy perturbation method,” Appl. Math. Comput., vol. 187, no. 2, pp. 1056–1062, 2007. https://doi.org/10.1016/j.amc.2006.09.019.Suche in Google Scholar

[13] D. D. Ganji and M. Rafei, “Solitary wave solutions for a generalized Hirota–Satsuma coupled KdV equation by homotopy perturbation method,” Phys. Lett., vol. 356, no. 2, pp. 131–137, 2006. https://doi.org/10.1016/j.physleta.2006.03.039.Suche in Google Scholar

[14] M. Rafei and D. D. Ganji, “Explicit solutions of Helmholtz equation and fifth-order KdV equation using homotopy perturbation method,” Int. J. Nonlinear Sci. Numer. Stimul., vol. 7, no. 3, pp. 321–329, 2006. https://doi.org/10.1515/ijnsns.2006.7.3.321.Suche in Google Scholar

[15] J. H. He, “The homotopy perturbation method for nonlinear oscillators with discontinuities,” Appl. Math. Comput., vol. 151, no. 1, pp. 287–292, 2004. https://doi.org/10.1016/s0096-3003(03)00341-2.Suche in Google Scholar

[16] L. Akinyemi, M. Şenol, and S. N. Huseen, “Modified homotopy methods for generalized fractional perturbed Zakharov-Kuznetsov equation in dusty plasma,” Adv. Differ. Equ., vol. 2021, no. 1, pp. 1–27, 2021. https://doi.org/10.1186/s13662-020-03208-5.Suche in Google Scholar

[17] T. Ozis and A. Yildirim, “A comparative study of He’ homotopy perturbation method for determining frequency-amplitude relation of a nonlinear oscillator with discontinuities,” Int. J. Nonlinear Sci. Numer. Stimul., vol. 8, no. 2, pp. 243–248, 2007.10.1515/IJNSNS.2007.8.2.243Suche in Google Scholar

[18] J. H. He, “Variational iteration method: a kind of nonlinear analytical technique: some examples,” Int. J. Non Lin. Mech., vol. 34, no. 4, pp. 699–708, 1999. https://doi.org/10.1016/s0020-7462(98)00048-1.Suche in Google Scholar

[19] D. Kumar, J. Singh, and D. Baleanu, “A hybrid computational approach for Klein–Gordon equations on Cantor sets,” Nonlinear Dynam., vol. 87, no. 1, pp. 511–517, 2017. https://doi.org/10.1007/s11071-016-3057-x.Suche in Google Scholar

[20] S. Chakraverty and D. Behera, “Dynamic responses of fractionally damped mechanical system using homotopy perturbation method,” Alexandria Eng. J., vol. 52, no. 3, pp. 557–562, 2013. https://doi.org/10.1016/j.aej.2013.04.007.Suche in Google Scholar

[21] H. Babazadeh, D. D. Ganji, and M. Akbarzade, “He’s Energy Balance Method to evaluate the effect of amplitude on the natural frequency in nonlinear vibration systems,” Prog. Electromagn. Res. M, vol. 4, pp. 143–154, 2008. https://doi.org/10.2528/pierm08071004.Suche in Google Scholar

[22] J. H. He, “A review on some new recently developed nonlinear analytical techniques,” Int. J. Nonlinear Sci. Numer. Stimul., vol. 1, no. 1, pp. 51–70, 2000. https://doi.org/10.1515/ijnsns.2000.1.1.51.Suche in Google Scholar

[23] W. Adel and Z. Sabir, “Solving a new design of nonlinear second-order Lane-Emden pantograph delay differential model via Bernoulli collocation method,” Eur. Phys. J. Plus, vol. 135, no. 5, 2020.10.1140/epjp/s13360-020-00449-xSuche in Google Scholar

[24] W. Adel, “A fast and efficient scheme for solving a class of nonlinear135 Lienard’s equations,” Math. Sci., vol. 14, no. 2, pp. 167–175, 2020. https://doi.org/10.1007/s40096-020-00328-7.Suche in Google Scholar

[25] W. Adel, H. Rezazadeh, M. Eslami, and M. Mirzazadeh, “A numerical treatment of the delayed Ambartsumian equation over large interval,” J. Interdiscipl. Math., vol. 23, no. 6, pp. 1077–1091, 2020. https://doi.org/10.1080/09720502.2020.1727616.Suche in Google Scholar

[26] M. El-Gamel, W. Adel, and M. S. El-Azab, “Bernoulli polynomial and the numerical solution of high-order boundary value problems,” Math. Nat. Sci., vol. 04, no. 01, pp. 45–59, 2019. https://doi.org/10.22436/mns.04.01.05.Suche in Google Scholar

[27] M. El-Gamel, W. Adel, and M. S. El-Azab, “Collocation method based on Bernoulli polynomial and shifted Chebyshev for solving the Bratu equation,” J. Appl. Comput. Math., vol. 07, no. 03, 2018. https://doi.org/10.4172/1502168-9679.1000407.Suche in Google Scholar

[28] A. Korkmaz and İ. Dağ, “Numerical simulations of boundary-forced RLW equation with cubic B-spline-based differential quadrature methods,” Arabian J. Sci. Eng., vol. 38, no. 5, pp. 1151–1160, 2013. https://doi.org/10.1007/s13369-012-0353-8.Suche in Google Scholar

[29] Y. M. Chen and J. K. Liu, “A modified Mickens iteration procedure for nonlinear oscillators,” J. Sound Vib., vol. 314, pp. 465–473, 2008. https://doi.org/10.1016/j.jsv.2008.03.007.Suche in Google Scholar

[30] S. H. Hosein Nia, A. N. Ranjbar, H. Soltani, and J. Ghasemi, “Effect off the initial approximation on stability and convergence in homotopy perturbation method,” Int. J. Nonlinear Dynam. Eng. Sci., vol. 1, p. 79, 2008.Suche in Google Scholar

[31] J. H. He, “Some asymptotic methods for strongly nonlinear equations,” Int. J. Mod. Phys. B, vol. 20, pp. 1141–1199, 2006. https://doi.org/10.1142/s0217979206033796.Suche in Google Scholar

[32] A. Beléndez and C. Pascual, “Harmonic balance approach to the periodic solutions of the (an)harmonic relativistic oscillator,” Phys. Lett., vol. 371, pp. 291–299, 2007. https://doi.org/10.1016/j.physleta.2007.09.010.Suche in Google Scholar

[33] H. Hu, “A classical iteration procedure valid for certain strongly nonlinear oscillators,” J. Sound Vib., vol. 299, pp. 397–402, 2007. https://doi.org/10.1016/j.jsv.2006.07.017.Suche in Google Scholar

[34] R. E. Mickens, “Harmonic balance and iteration calculations of periodic solutions to y″ + y−1 = 0,” J. Sound Vib., vol. 306, pp. 968–972, 2007. https://doi.org/10.1016/j.jsv.2007.06.010.Suche in Google Scholar

[35] J. I. Ramos, “On Linstedt-Poincaré techniques for the quintic Duffing equation,” Appl. Math. Comput., vol. 193, pp. 303–310, 2007. https://doi.org/10.1016/j.amc.2007.03.050.Suche in Google Scholar

[36] C. Park, M. M. Khater, A. H. Abdel-Aty, et al.., “Dynamical analysis of the nonlinear complex fractional emerging telecommunication model with higher-order dispersive cubic-quintic,” Alexandria Eng. J., vol. 59, no. 3, pp. 1425–1433, 2020. https://doi.org/10.1016/j.aej.2020.03.046.Suche in Google Scholar

[37] W. Gao, H. Rezazadeh, Z. Pinar, H. M. Baskonus, S. Sarwar, and G. Yel, “Novel explicit solutions for the nonlinear Zoomeron equation by using newly extended direct algebraic technique,” Opt. Quant. Electron., vol. 52, no. 1, pp. 1–13, 2020. https://doi.org/10.1007/s11082-019-2162-8.Suche in Google Scholar

[38] J. G. Liu, M. Eslami, H. Rezazadeh, and M. Mirzazadeh, “The dynamical behavior of mixed type lump solutions on the (3+1)-dimensional generalized Kadomtsev-Petviashvili-Boussinesq equation,” Int. J. Nonlinear Sci. Numer. Stimul., vol. 21, nos. 7–8, pp. 661–665, 2020. https://doi.org/10.1515/ijnsns-2018-0373.Suche in Google Scholar

[39] B. Ghanbari, “On the modeling of the interaction between tumor growth and the immune system using some new fractional and fractional-fractal operators,” Adv. Differ. Equ., vol. 2020, no. 1, pp. 1–32, 2020. https://doi.org/10.1186/s13662-020-03040-x.Suche in Google Scholar PubMed PubMed Central

[40] B. Ghanbari, “A fractional system of delay differential equation with nonsingular kernels in modeling hand-foot-mouth disease,” Adv. Differ. Equ., vol. 2020, no. 1, pp. 1–20, 2020. https://doi.org/10.1186/s13662-020-02993-3.Suche in Google Scholar PubMed PubMed Central

[41] B. Ghanbari and A. Atangana, “Some new edge detecting techniques based on fractional derivatives with non-local and non-singular kernels,” Adv. Differ. Equ., vol. 2020, no. 1, pp. 1–19, 2020. https://doi.org/10.1186/s13662-020-02890-9.Suche in Google Scholar

[42] B. Ghanbari, “On approximate solutions for a fractional prey-predator model involving the Atangana-Baleanu derivative,” Adv. Differ. Equ., vol. 2020, no. 1, pp. 1–24, 2020. https://doi.org/10.1186/s13662-020-03140-8.Suche in Google Scholar

[43] K. Hosseini, M. Mirzazadeh, and J. F. Gómez-Aguilar, “Soliton solutions of the Sasa-Satsuma equation in the monomode optical fibers including the beta-derivatives,” Optik, vol. 224, p. 165425, 2020. https://doi.org/10.1016/j.ijleo.2020.165425.Suche in Google Scholar

[44] K. Hosseini, M. Mirzazadeh, J. Vahidi, and R. Asghari, “Optical wave structures to the Fokas-Lenells equation,” Optik, vol. 207, p. 164450, 2020. https://doi.org/10.1016/j.ijleo.2020.164450.Suche in Google Scholar

[45] K. Hosseini, M. Mirzazadeh, M. Ilie, and S. Radmehr, “Dynamics of optical solitons in the perturbed Gerdjikov-Ivanov equation,” Optik, vol. 206, p. 164350, 2020. https://doi.org/10.1016/j.ijleo.2020.164350.Suche in Google Scholar

[46] A. Akgül and M. S. Hashemi, “Group preserving scheme and reproducing kernel method for the Poisson-Boltzmann equation for semiconductor devices,” Nonlinear Dynam., vol. 88, no. 4, pp. 2817–2829, 2017. https://doi.org/10.1007/s11071-017-3414-4.Suche in Google Scholar

[47] R. Najafi, F. Bahrami, and M. S. Hashemi, “Classical and nonclassical Lie symmetry analysis to a class of nonlinear time-fractional differential equations,” Nonlinear Dynam., vol. 87, no. 3, pp. 1785–1796, 2017. https://doi.org/10.1007/s11071-016-3152-z.Suche in Google Scholar

[48] M. S. Hashemi, “A novel simple algorithm for solving the magneto-hemodynamic flow in a semi-porous channel,” Eur. J. Mech. B Fluid, vol. 65, pp. 359–367, 2017. https://doi.org/10.1016/j.euromechflu.2017.05.008.Suche in Google Scholar

[49] L. Akinyemi, M. Şenol, and O. S. Iyiola, “Exact solutions of the generalized multidimensional mathematical physics models via sub-equation method,” Math. Comput. Simulat., vol. 182, pp. 211–233, 2021. https://doi.org/10.1016/j.matcom.2020.10.017.Suche in Google Scholar

[50] M. Şenol, O. S. Iyiola, H. D. Kasmaei, and L. Akinyemi, “Efficient analytical techniques for solving time-fractional nonlinear coupled Jaulent-Miodek system with energy-dependent Schrödinger potential,” Adv. Differ. Equ., vol. 2019, no. 1, p. 462, 2019.10.1186/s13662-019-2397-5Suche in Google Scholar

[51] L. Akinyemi, “A fractional analysis of Noyes-Field model for the nonlinear Belousov-Zhabotinsky reaction,” Comput. Appl. Math., vol. 39, pp. 1–34, 2020. https://doi.org/10.1007/s40314-020-01212-9.Suche in Google Scholar

[52] R. Abazari, S. Jamshidzadeh, and A. Biswas, “Solitary wave solutions of coupled Boussinesq equation,” Complexity, vol. 21, no. S2, pp. 151–155, 2016. https://doi.org/10.1002/cplx.21791.Suche in Google Scholar

[53] R. Abazari and S. Jamshidzadeh, “Exact solitary wave solutions of the complex Klein-Gordon equation,” Optik, vol. 126, no. 19, pp. 1970–1975, 2015. https://doi.org/10.1016/j.ijleo.2015.05.056.Suche in Google Scholar

[54] R. Abazari, “Solitary-wave solutions of the Klein-Gordon equation with quintic nonlinearity,” J. Appl. Mech. Tech. Phys., vol. 54, no. 3, pp. 397–403, 2013. https://doi.org/10.1134/s0021894413030073.Suche in Google Scholar

[55] R. E. Mickens, Nonstandard Finite Difference Models of Differential Equations, Singapore, World Scientific, 1994.10.1142/2081Suche in Google Scholar

[56] R. E. Mickens, “Iteration procedure for determining approximate solutions to non-linear oscillator equation,” J. Sound Vib., vol. 116, pp. 185–188, 1987. https://doi.org/10.1016/s0022-460x(87)81330-5.Suche in Google Scholar

[57] C. W. Lim and B. S. Wu, “A modified Mickens procedure for certain non-linear oscillators,” J. Sound Vib., vol. 257, pp. 202–206, 2002. https://doi.org/10.1006/jsvi.2001.4233.Suche in Google Scholar

[58] R. E. Michens, “A generalized iteration procedure for calculating approximations to periodic solutions of “truly nonlinear oscillators”,” J. Sound Vib., vol. 287, pp. 1045–1051, 2005.10.1016/j.jsv.2005.03.005Suche in Google Scholar

[59] R. E. Mickens, “Iteration method solutions for conservative and limit-cycle x1/3 force oscillators,” J. Sound Vib., vol. 292, pp. 964–968, 2006. https://doi.org/10.1016/j.jsv.2005.08.020.Suche in Google Scholar

[60] R. E. Mickens, Oscillations in Planar Dynamics Systems, Singapore, World Scientific, 1996.10.1142/2778Suche in Google Scholar

[61] A. Belendez, A. Hernandez, T. Belendez, M. L. A. lvarez, S. Gallego, M. Ortuno, and C. Neipp, “Application of the harmonic balance method to a nonlinear oscillator typified by a mass attached to a stretched wire,” J. Sound Vib., vol. 302, pp. 1018–1029, 2007. https://doi.org/10.1016/j.jsv.2006.12.011.Suche in Google Scholar

Received: 2020-11-18
Accepted: 2021-07-20
Published Online: 2021-08-02

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Original Research Articles
  3. Frequency responses for induced neural transmembrane potential by electromagnetic waves (1 kHz to 1 GHz)
  4. Investigating existence results for fractional evolution inclusions with order r ∈ (1, 2) in Banach space
  5. Optimal control of non-instantaneous impulsive second-order stochastic McKean–Vlasov evolution system with Clarke subdifferential
  6. Generalized forms of fractional Euler and Runge–Kutta methods using non-uniform grid
  7. Controllability of coupled fractional integrodifferential equations
  8. A new generalized approach to study the existence of solutions of nonlinear fractional boundary value problems
  9. Rational soliton solutions in the nonlocal coupled complex modified Korteweg–de Vries equations
  10. Buoyancy driven flow characteristics inside a cavity equiped with diamond elliptic array
  11. Analysis and numerical effects of time-delayed rabies epidemic model with diffusion
  12. Two occurrences of fractional actions in nonlinear dynamics
  13. Multiwave interaction solutions for a (3 + 1)-dimensional B-type Kadomtsev–Petviashvili equation in fluid dynamics
  14. Effects of mixed time delays and D operators on fixed-time synchronization of discontinuous neutral-type neural networks
  15. Solvability and stability of nonlinear hybrid ∆-difference equations of fractional-order
  16. Weak and strong boundedness for p-adic fractional Hausdorff operator and its commutator
  17. Simulation and modeling of different cell shapes for closed-cell LM-13 alloy foam for compressive behavior
  18. Pandemic management by a spatio–temporal mathematical model
  19. Adaptive ADI difference solution of quenching problems based on the 3D convection–reaction–diffusion equation
  20. Null controllability of Hilfer fractional stochastic integrodifferential equations with noninstantaneous impulsive and Poisson jump
  21. Application of modified Mickens iteration procedure to a pendulum and the motion of a mass attached to a stretched elastic wire
  22. Modeling the spatiotemporal intracellular calcium dynamics in nerve cell with strong memory effects
  23. Switched coupled system of nonlinear impulsive Langevin equations involving Hilfer fractional-order derivatives
  24. Improving the dynamic behavior of the plate under supersonic air flow by using nonlinear energy sink
Heruntergeladen am 8.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/ijnsns-2020-0256/pdf
Button zum nach oben scrollen