Startseite Bright and dark optical solitons for the generalized variable coefficients nonlinear Schrödinger equation
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Bright and dark optical solitons for the generalized variable coefficients nonlinear Schrödinger equation

  • Rehab M. El-Shiekh ORCID logo EMAIL logo und Mahmoud Gaballah
Veröffentlicht/Copyright: 10. August 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, the generalized nonlinear Schrödinger equation with variable coefficients (gvcNLSE) arising in optical fiber is solved by using two different techniques the trail equation method and direct integration method. Many different new types of wave solutions like Jacobi, periodic and soliton wave solutions are obtained. From this study we have concluded that the direct integration method is more easy and straightforward than the trail equation method. As an application in optic fibers the propagation of the frequency modulated optical soliton is discussed and we have deduced that it's propagation shape is affected with the different values of both the amplification increment and the group velocity (GVD).


Corresponding author: Rehab M. El-Shiekh, Department of Mathematics, Faculty of Education, Ain Shams University, Cairo, Egypt; and College of Business Administration in Majmaah, Majmaah University 11952, Kingdom of Saudi Arabia. E-mail: ,

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This research was funded by Majmaah University.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] X. Lü, W. X. Ma, Y. Zhou, and C. M. Khalique, “Rational solutions to an extended Kadomtsev-Petviashvili-like equation with sym-bolic computation,” Comput. Math. with Appl., vol. 71, pp. 1560–1567, 2016, https://doi.org/10.1016/j.camwa.2016.02.017.Suche in Google Scholar

[2] L. N. Gao, X. Y. Zhao, Y. Y. Zi, J. Yu, and X. Lü, “Resonant behavior of multiple wave solutions to a Hirota bilinear equation,” Comput. Math. with Appl., vol. 72, pp. 1225–1229, 2016, https://doi.org/10.1016/j.camwa.2016.06.008.Suche in Google Scholar

[3] X. Lü, W. X. Ma, S. T. Chen, and C. M. Khalique, “A note on rational solutions to a Hirota-Satsuma-like equation,” Appl. Math. Lett., vol. 58, pp. 13–18, 2016, https://doi.org/10.1016/j.aml.2015.12.019.Suche in Google Scholar

[4] X. Lü, S. T. Chen, and W. X. Ma, “Constructing lump solutions to a generalized Kadomtsev-Petviashvili-Boussinesq equation,” Nonlinear Dyn., vol. 86, pp. 523–534, 2016, https://doi.org/10.1007/s11071-016-2905-z.Suche in Google Scholar

[5] L. N. Gao, Y. Y. Zi, Y. H. Yin, W. X. Ma, and X. Lü, “Bäcklund transformation, multiple wave solutions and lump solutions to a (3 + 1)-dimensional nonlinear evolution equation,” Nonlinear Dyn., vol. 89, pp. 2233–2240, 2017, https://doi.org/10.1007/s11071-017-3581-3.Suche in Google Scholar

[6] G. M. Wei, Y. L. Lu, Y. Q. Xie, and W. X. Zheng, “Lie symmetry analysis and conservation law of variable-coefficient Davey-Stewartson equation,” Comput. Math. with Appl., vol. 75, pp. 3420–3430, 2018, https://doi.org/10.1016/j.camwa.2018.02.008.664444.Suche in Google Scholar

[7] H. Rezazadeh, H. Tariq, M. Eslami, M. Mirzazadeh, and Q. Zhou, “New exact solutions of nonlinear conformable time-fractional Phi-4 equation,” Chinese J. Phys., vol. 56, pp. 2805–2816, 2018, https://doi.org/10.1016/J.CJPH.2018.08.001.Suche in Google Scholar

[8] A. Biswas, M. O. Al-Amr, H. Rezazadeh, et al., “Resonant optical solitons with dual-power 10 law nonlinearity and fractional temporal evolution,” Optik (Stuttg), vol. 165, pp. 233–239, 2018, https://doi.org/10.1016/J.IJLEO.2018.03.123.Suche in Google Scholar

[9] N. Raza, U. Afzal, A. R. Butt, and H. Rezazadeh, “Optical solitons in nematic liquid crystals with Kerr and parabolic law nonlinearities,” Opt. Quantum Electron., vol. 51, p. 107, 2019, https://doi.org/10.1007/s11082-019-1813-0.Suche in Google Scholar

[10] H. Rezazadeh, A. Korkmaz, M. Eslami, and S. M. Mirhosseini-Alizamini, “A large family of optical solutions to Kundu-Eckhaus model by a new auxiliary equation method,” Opt. Quantum Electron., vol. 51, p. 84, 2019, https://doi.org/10.1007/s11082-019-1801-4.Suche in Google Scholar

[11] J. G. Liu, M. Eslami, H. Rezazadeh, and M. Mirzazadeh, “Rational solutions and lump solutions to a non-isospectral and generalized variable-coefficient Kadomtsev-Petviashvili equation,” Nonlinear Dyn., vol. 95, pp. 1027–1033, 2019, https://doi.org/10.1007/s11071-018-4612-4.Suche in Google Scholar

[12] H. Rezazadeh, “New solitons solutions of the complex Ginzburg-Landau equation with Kerr law nonlinearity,” Optik (Stuttg), vol. 167, pp. 218–227, 2018, https://doi.org/10.1016/J.IJLEO.2018.04.026.Suche in Google Scholar

[13] A. Biswas, H. Rezazadeh, M. Mirzazadeh, et al., “Optical solitons having weak non-local nonlinearity by two integration schemes,” Optik (Stuttg), vol. 164, pp. 380–384, 2018, https://doi.org/10.1016/J.IJLEO.2018.03.026.Suche in Google Scholar

[14] H. Rezazadeh, M. Mirzazadeh, S. M. Mirhosseini-Alizamini, A. Neirameh,M. Eslami, and Q. Zhou, “Optical solitons of Lakshmanan-Porsezian-Daniel model with a couple of nonlinearities,” Optik (Stuttg), vol. 164, pp. 414–423, 2018, https://doi.org/10.1016/J.IJLEO.2018.03.039.Suche in Google Scholar

[15] Q. Zhou, D. Kumar, M. Mirzazadeh, M. Eslami, and H. Rezazadeh, “Opti-cal soliton in nonlocal nonlinear medium with cubic-quintic nonlinearities and spatio-temporal dispersion,” ACTA Phys. Pol. A, vol. 134, 2018, https://doi.org/10.12693/APhysPolA.134.1204.Suche in Google Scholar

[16] K. U. Tariq, M. Younis, H. Rezazadeh, S. T. R. Rizvi, and M. S. Os-man, “Optical solitons with quadratic-cubic nonlinearity and fractional temporal evolution,” Mod. Phys. Lett. B, vol. 32, 2018, Art no. 1850317, https://doi.org/10.1142/S0217984918503177.Suche in Google Scholar

[17] H. Rezazadeh, A. Korkmaz, M. Eslami, J. Vahidi, and R. Asghari, “Traveling wave solution of conformable fractional generalized reaction Duffing model by generalized projective Riccati equation method,” Opt. Quantum Electron., vol. 50, p. 150, 2018, https://doi.org/10.1007/s11082-018-1416-1.Suche in Google Scholar

[18] M. S. Osman, H. Rezazadeh, M. Eslami, A. Neirameh, and M. Mirzazadeh, “Analtyical study of solitons to Benjamin-Bona-Mahony-Peregrine equation with power law nonlinearity by 11 using three methods,” U.P.B. Sci. Bull., Ser. A, vol. 80, 2018.https://www.scienti.cbulletin.upb.ro/rev_docs_arhiva/fullf37_570579.pdf [accessed: August 2, 2019].Suche in Google Scholar

[19] H. Yépez-Martínez, H. Rezazadeh, A. Souleymanou, et al., “The extended modified method applied to optical solitons solutions in birefringent fibers with weak nonlocal nonlinearity and four wave mixing,” Chinese J. Phys., vol. 58, pp. 137–150, 2019, https://doi.org/10.1016/j.cjph.2019.02.002.Suche in Google Scholar

[20] Y. H. Yin, Ma, W. X., Liu, J. G., Lü, X., “Diversity of Exact Solutions to a (3+1)-Dimensional Nonlinear Evolution Equation and Its Reduction,” Computers & mathematics with applications, vol. 76, pp. 1275–1283, 2018. https://doi.org/10.1016/j.camwa.2018.06.020.Suche in Google Scholar

[21] H. N. Xu, W. Y. Ruan, Y. Zhang, and X. Lü, “Multi-exponential wave solutions to two extended Jimbo-Miwa equations and the resonance behavior,” Appl. Math. Lett., vol. 99, 2020, Art no. 105976, https://doi.org/10.1016/J.AML.2019.07.007.Suche in Google Scholar

[22] Y. F. Hua, B. L. Guo, W. X. Ma, and X. Lü, “Interaction behavior associated with a generalized (2+1)-dimensional Hirota bilinear equation for nonlinear waves,” Appl. Math. Model., vol. 74, pp. 184–198, 2019, https://doi.org/10.1016/J.APM.2019.04.044.Suche in Google Scholar

[23] X. Lü, F. Lin, and F. Qi, “Analytical study on a two-dimensional Korteweg-de Vries model with bilinear representation, Bäcklund transformation and soliton solutions,” Appl. Math. Model., vol. 39, pp. 3221–3226, 2015, https://doi.org/10.1016/j.apm.2014.10.046.Suche in Google Scholar

[24] S. J. Chen, Y. H. Yin, W. X. Ma, and X. Lü, “Abundant exact solutions and interaction phenomena of the (2 + 1)-dimensional YTSF equation,” Anal. Math. Phys., vol. 9, pp. 2329–2344, 2019, https://doi.org/10.1007/s13324-019-00338-2.Suche in Google Scholar

[25] R. M. El-Shiekh and A. G. Al-Nowehy, “Integral methods to solve the variable coefficient nonlinear Schrödinger equation,” Zeitschrift Fur Naturforsch. - Sect. C J. Biosci., vol. 68A, 2013, https://doi.org/10.5560/ZNA.2012-0108.Suche in Google Scholar

[26] R. M. El-Shiekh, “Classes of new exact solutions for nonlinear Schrödinger equations with variable coefficients arising in optical fiber,” Results Phys., vol. 13, 2019, Art no. 102214. https://doi.org/10.1016/j.rinp.2019.102214.Suche in Google Scholar

[27] H. Rezazadeh, S. M. Mirhosseini-Alizamini, M. Eslami, M. Rezazadeh, M. Mirzazadeh, and S. Abbagari, “New optical solitons of nonlinear conformable fractional Schrödinger-Hirota equation,” Optik (Stuttg), vol. 172, pp. 545–553, 2018, https://doi.org/10.1016/J.IJLEO.2018.06.111.Suche in Google Scholar

[28] X. Lü and M. Peng, “Painlevé-integrability and explicit solutions of the general two-coupled nonlinear Schrödinger system in the optical fiber communications”, Nonlinear Dyn., vol. 73, pp. 405–410, 2013, https://doi.org/10.1007/s11071-013-0795-x.Suche in Google Scholar

[29] X. Lü, “Madelung fluid description on a generalized mixed nonlinear Schrödinger equation,” Nonlinear Dyn., vol. 81, pp. 239–247, 2015, https://doi.org/10.1007/s11071-015-1985-5.Suche in Google Scholar

[30] R. M. El-Shiekh and M. Gaballah-, “Solitary wave solutions for the variable- coefficient coupled nonlinear Schrödinger equations and Davey-Stewartson system using modified sine-Gordon equation method,” J. Ocean Eng. Sci., vol. 14, no. 1, pp. 783–789, 2019. https://doi.org/10.1016/j.joes.2019.10.003.Suche in Google Scholar

[31] A. V. Zhukov, I. O. Zolotovskii, O. G. Okhotnikov, D. I. Sementsov, A. A. Sysolyatin, and I. O. Yavtushenko, “Dynamics of frequency-modulated soliton-like pulses in a longitudinally inhomogeneous active optical waveguide,” Opt. Spec-trosc., vol. 113, pp. 75–80, 2012, https://doi.org/10.1134/S0030400X12060239.Suche in Google Scholar

[32] I. O. Zolotovskii, S. G. Novikov, O. G. Okhotnikov, D. I. Sementsov, I. O. Yavtushenko, and M. S. Yavtushenko, “Amplification of frequency-modulated soliton like pulses in inhomogeneous optical waveguides with normal dispersion,” Opt.Spectrosc., vol. 112, pp. 893–897, 2012, https://doi.org/10.1134/S0030400X12060252.Suche in Google Scholar

[33] R. Hao, L. Li, Z. Li, W. Xue, and G. Zhou, “A new approach to ex-act soliton solutions and soliton interaction for the nonlinear Schrödinger equation with variable coefficients,” Opt. Commun., vol. 236, pp. 79–86, 2004, https://doi.org/10.1016/j.optcom.2004.03.005.Suche in Google Scholar

[34] B. Q. Li and Y. L. Ma, “Periodic and N-kink-like optical solitons for a generalized Schrödinger equation with variable coefficients in an inhomogeneous fiber system,” Optik (Stuttg), vol. 179, pp. 854–860, 2019, https://doi.org/10.1016/j.ijleo.2018.11.008.Suche in Google Scholar

[35] X. Zhang, H. Guo, G. Ma, W. Feng, X. Zhang, and W. Liu, “Anti-dark soliton interactions for the variable-coefficient nonlinear Schrödinger equation,” Optik (Stuttg), vol. 161 (2018), pp. 217–220, 2018. https://www.sciencedirect.com/science/article/pii/S003040261830202X [accessed: February 14, 2019].10.1016/j.ijleo.2018.02.040Suche in Google Scholar

[36] M. H. M. Moussa and R. M. El Shikh, “Similarity Reduction and similarity solutions of Zabolotskay-Khoklov equation with a dissipative term via symmetry method,” Phys. A Stat. Mech. Its Appl., vol. 371, 2006, https://doi.org/10.1016/j.physa.2006.04.044.Suche in Google Scholar

[37] M. H. M. Moussa and R. M. El Shikh, “Auto-Bäcklund transformation and similarity reductions to the variable coefficients variant Boussinesq system,” Phys. Lett. Sect. A Gen. At. Solid State Phys., vol. 372, 2008, https://doi.org/10.1016/j.physleta.2007.09.056.Suche in Google Scholar

[38] R. M. El-Shiekh, “Periodic and solitary wave solutions for a generalized variable-coefficient Boiti-Leon-Pempinlli system,” Comput. Math. with Appl., vol. 73, 2017, https://doi.org/10.1016/j.camwa.2017.01.008.13.Suche in Google Scholar

[39] R. M. El-Shiekh, “Jacobi elliptic wave solutions for two variable coefficients cylindrical Korteweg-de Vries models arising in dusty plasmas by using direct reduction method,” Comput. Math. with Appl., vol. 75, pp. 1676–1684, 2018, https://doi.org/10.1016/j.camwa.2017.11.031.Suche in Google Scholar

[40] R. M. El-Shiekh, “New similarity solutions for the generalized variable coefficients KdV equation by using symmetry group method,” Arab J. Basic. Appl. Sci., vol. 25, pp. 66–70, 2018, https://doi.org/10.1080/25765299.2018.1449343.Suche in Google Scholar

[41] R. M. El-Shiekh, “Painlevé test, Bäcklund transformation and consistent Riccati expansion solvability for two generalised cylindrical Korteweg-deries equations with variable coefficients,” Z. Naturforsch., vol. 73, pp. 207–213, 2018. https://doi.org/10.1515/zna-2017-0349.Suche in Google Scholar

[42] M. H. M. Moussa and R. M. El-Shiekh, “Similarity solutions for generalized variable coefficients zakharov-kuznetso equation under some integrability conditions,” Commun. Theor. Phys., vol. 54, 2010, https://doi.org/10.1088/0253-6102/54/4/04.Suche in Google Scholar

[43] M. H. M. Moussa and R. M. El-Shiekh, “Direct reduction and exact solutions for generalized variable coefficients 2D KdV equation under some integrability conditions,” Commun. Theor. Phys., vol. 55, 2011, https://doi.org/10.1088/02536102/55/4/03.Suche in Google Scholar

[44] M. H. M. Moussa, R. A. K. Omar, R. M. El-Shiekh, and H. R. El-Melegy, “Non-equivalent similarity reductions and exact solutions for coupled burgers-type equations,” Commun. Theor. Phys., vol. 57, 2012, https://doi.org/10.1088/0253-6102/57/1/01.Suche in Google Scholar

[45] R. M. El-Shiekh, “New exact solutions for the variable coefficient modified KdV equation using direct reduction method,” Math. Methods Appl. Sci., vol. 36, 2013, https://doi.org/10.1002/mma.2561.Suche in Google Scholar

[46] G. M. Moatimid, R. M. El-Shiekh, and A. G. Al-Nowehy, “Exact solutions for Calogero-Bogoyavlenskii-Schiff equation using symmetry method,” Appl. Math. Comput., vol. 220, 2013, https://doi.org/10.1016/j.amc.2013.06.034.Suche in Google Scholar

[47] M. F. El-Sayed, G. M. Moatimid, M. H. M. Moussa, R. M. El-Shiekh, and A. A. El-Satar, “Symmetry group analysis and similarity solutions for the (2+1)-dimensional coupled Burger’s system,” Math. Methods Appl. Sci., vol. 37, 2014, https://doi.org/10.1002/mma.2870.Suche in Google Scholar

[48] M. F. El-Sayed, G. M. Moatimid, M. H. M. Moussa, R. M. El-Shiekh, F. A. H. El-Shiekh, and A.A. El-Satar, “A study of integrability and symmetry for the (p +1)th Boltzmann equation via Painlevé analysis and Lie-group method,” Math.Methods Appl. Sci., vol. 38, 2015, https://doi.org/10.1002/mma.3307.Suche in Google Scholar

[49] R. M. El-Shiekh, “Direct similarity reduction and new exact solutions for the variable-coefficient kadomtsev-petviashvili equation,” Zeitschrift Fur Natur-forsch. - Sect. A J. Phys. Sci., vol. 70, 2015, https://doi.org/10.1515/zna-2015-0057.Suche in Google Scholar

[50] M. Mirzazadeh, “Soliton solutions of Davey-Stewartson equation by trial equation method and ansatz approach,” Nonlinear Dyn., vol. 82, pp. 1775–1780, 2015, https://doi.org/10.1007/s11071-015-2276-x.Suche in Google Scholar

[51] Q. Zhou, M. Ekici, A. Sonmezoglu, M. Mirzazadeh, and M. Eslami, “Optical solitons with Biswas-Milovic equation by extended trial equation method,” Nonlinear Dyn., vol. 84, pp. 1883–1900, 2016, https://doi.org/10.1007/s11071-016-2613-8.Suche in Google Scholar

[52] M. El-Shiekh Rehab and Gaballah, Mahmoud, “Novel solitons and periodic wave solutions for Davey–Stewartson system with variable coefficients,” Journal of Taibah University for Science vol. 14, no. 1, pp. 783–789, 2020. https://doi.org/10.1080/16583655.2020.1774975.Suche in Google Scholar

Received: 2019-02-08
Accepted: 2020-03-25
Published Online: 2020-08-10
Published in Print: 2020-11-18

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Original Research Articles
  3. ANFIS based system identification of underactuated systems
  4. The dynamical behavior of mixed type lump solutions on the (3 + 1)-dimensional generalized Kadomtsev–Petviashvili–Boussinesq equation
  5. A generalization of weighted companion of Ostrowski integral inequality for mappings of bounded variation
  6. Bright and dark optical solitons for the generalized variable coefficients nonlinear Schrödinger equation
  7. A multivariate spectral quasi-linearization method for the solution of (2+1) dimensional Burgers’ equations
  8. Global dissipativity and exponential synchronization of mixed time-varying delays neural networks with discontinuous activations
  9. Integrodifference master equation describing actively growing blood vessels in angiogenesis
  10. On the behaviors of rough multilinear fractional integral and multi-sublinear fractional maximal operators both on product Lp and weighted Lp spaces
  11. Approximate controllability of nonlinear Hilfer fractional stochastic differential system with Rosenblatt process and Poisson jumps
  12. Lie symmetries and singularity analysis for generalized shallow-water equations
  13. Conditions for the local and global asymptotic stability of the time–fractional Degn–Harrison system
  14. Nonlinear wave equation in an inhomogeneous medium from non-standard singular Lagrangians functional with two occurrences of integrals
  15. Lie symmetry analysis and similarity solutions for the Jimbo – Miwa equation and generalisations
  16. The barotropic Rossby waves with topography on the earth’s δ-surface
  17. Synchronization control between discrete uncertain networks with different topologies
  18. Boundary shape functions methods for solving the nonlinear singularly perturbed problems with Robin boundary conditions
  19. Global exponential stability analysis of anti-periodic solutions of discontinuous bidirectional associative memory (BAM) neural networks with time-varying delays
  20. A parallel hybrid implementation of the 2D acoustic wave equation
  21. Approximate controllability of fractional stochastic evolution equations with nonlocal conditions
  22. Fractional (3+1)-dim Jimbo Miwa system: invariance properties, exact solutions, solitary pattern solutions and conservation laws
  23. Optical solitons and stability analysis for the generalized second-order nonlinear Schrödinger equation in an optical fiber
Heruntergeladen am 1.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijnsns-2019-0054/html
Button zum nach oben scrollen