Abstract
In this paper, a computational model is proposed to predict the noise radiation of a planetary gear reducer. In addition, a system-level vibro-acoustic model of a two-stage planetary gear reducer is also established, and the dynamic contact equations of engagement are deduced to investigate the dynamic loads at the interface of bearing-housing and ring-housing in operation, using a large mining two-stage planetary reducer as a test mechanism. Moreover, the frequency response of the planetary transmission has been derived, the radiation noises from the two-stage planetary gear train are analyzed, the simulation results agree well with the experimental results. This research can be guide structural optimization of planetary gear mining reducer.
Funding source: National Natural Science Foundation of China
Award Identifier / Grant number: 52072051
Funding source: Chongqing Basic Research and Frontier Exploration Project
Award Identifier / Grant number: cstc2018jcyjAX0468
Funding source: Fundamental Research Funds for the Central Universities
Award Identifier / Grant number: 2019CDXYQC0002
Funding source: National Science and Technology Support Program
Award Identifier / Grant number: 2013BAF01B05
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: This project is supported by Chongqing Basic Research and Frontier Exploration Project (Grant No. cstc2018jcyjAX0468), National Natural Science Foundation of China (Grant No. 52072051) and the National Science and Technology Support Program (Grant No. 2013BAF01B05).
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
[1] J. Liu, Y. Xu, Y. Shao, et al., “The effect of a localized fault in the planet bearing on vibrations of a planetary gear set,” J. Strain Anal. Eng. Des., 2018.10.1177/0309324718769491Suche in Google Scholar
[2] W. Yang and X. Tang, “Numerical analysis for heat transfer laws of a wet multi-disk clutch during transient contact,” Int. J. Nonlinear Sci. Numer. Stimul., vol. 18, nos 7–8, pp. 599–613, 2017, https://doi.org/10.1515/ijnsns-2017-0081.Suche in Google Scholar
[3] W. Yang and X. Tang, “Modelling and modal analysis of a hoist equipped with two-stage planetary gear transmission system,” in Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, vol. 231, 4, 2017, pp. 739–749.10.1177/1464419316684067Suche in Google Scholar
[4] X. Tang, D. Zhang, T. Liu, A. Khajepour, H. Yu, and H. Wang, “Research on the energy control of a dual-motor hybrid vehicle during engine start-stop process,” Energy, vol. 166, pp. 1181–1193, 2019, https://doi.org/10.1016/j.energy.2018.10.130.Suche in Google Scholar
[5] A. Strozzi, E. Bertocchi, S. Mantovani, et al.., “Analytical evaluation of the peak contact pressure in a rectangular elastomeric seal with rounded edges,” J. Strain Anal. Eng. Des., vol. 51, no. 4, pp. 304–317, 2016, https://doi.org/10.1177/0309324715612300.Suche in Google Scholar
[6] X. Tang, W. Yang, X. Hu, et al.., “A novel simplified model for torsional vibration analysis of a series-parallel hybrid electric vehicle,” Mech. Syst. Signal Process., vol. 85, pp. 329–338, 2017, https://doi.org/10.1016/j.ymssp.2016.08.020.Suche in Google Scholar
[7] Y. Qin, C. Wei, X. Tang, et al.., “A novel nonlinear road profile classification approach for controllable suspension system: simulation and experimental validation,” Mech. Syst. Signal Process., vol. 125, pp. 79–98, 2019, https://doi.org/10.1016/j.ymssp.2018.07.015.Suche in Google Scholar
[8] X. Tang, X. Hu, W. Yang, et al.., “Novel torsional vibration modeling and assessment of a power-split hybrid electric vehicle equipped with a dual mass flywheel,” IEEE Trans. Veh. Technol., vol. 67, no. 3, pp. 1990–2000, 2018, https://doi.org/10.1109/tvt.2017.2769084.Suche in Google Scholar
[9] X. Tang, W. Yang, D. Zhang, et al.., “A novel two degree-of-freedom dynamic model of a full hybrid vehicle,” Int. J. Electr. Hybrid Veh. (IJEHV), vol. 9, no. 1, pp. 67–77, 2017, https://doi.org/10.1504/ijehv.2017.082817.Suche in Google Scholar
[10] A. Kahraman, “Effect of axial vibrations on the dynamics of a helical gear pair,” J. Vib. Acoust., vol. 115, no. 1, pp. 33–39, 1993, https://doi.org/10.1115/1.2930311.Suche in Google Scholar
[11] P. Y. Wang and X. L. Cai, “Vibrational analysis of planetary gear trains by finite element method,” J. Vibroeng., vol. 14, no. 4, pp. 1450–1458, 2013.10.4028/www.scientific.net/AMM.284-287.1012Suche in Google Scholar
[12] V. Abousleiman and P. Velex, “A hybrid 3D finite element/lumped parameter model for quasi-static and dynamic analyses of planetary/epicyclical gear sets,” Mech. Mach. Theor., vol. 41, pp. 725–748, 2006, https://doi.org/10.1016/j.mechmachtheory.2005.09.005.Suche in Google Scholar
[13] D. R. Kiracofe and R. G. Parker, “Structured vibration modes of general compound planetary gear systems,” J. Vib. Acoust., vol. 129, pp. 1–16, 2007, https://doi.org/10.1115/1.2345680.Suche in Google Scholar
[14] G. Roulois, Y. Skiadanek, F. Marrot, and J. Caillet, “Dynamic and acoustic simulation of helicopters,” in International Gear Conference, 2014, pp. 437–446.10.1533/9781782421955.437Suche in Google Scholar
[15] J. BihR, M. Heider, M. Otto, et al., “Gear noise prediction in automotive transmissions,” in International Gear Conference, 2014, pp. 457–465.10.1533/9781782421955.457Suche in Google Scholar
[16] M. Shuai, Z. Yidu, and W. Qiong, “Research on multiple-split load sharing of two-stage star gearing system in consideration of displacement compatibility,” Mech. Mach. Theor., vol. 88, pp. 1–15, 2015, https://doi.org/10.1016/j.mechmachtheory.2015.01.005.Suche in Google Scholar
[17] M. Shuai, Z. Yidu, W. Qiong, et al., “Load sharing behavior analysis method of wind turbine gearbox in consideration of multiple-errors,” Renew. Energy, vol. 97, pp. 481–491, 2016.10.1016/j.renene.2016.05.058Suche in Google Scholar
[18] R. Gunda and S. Vijayakar, Acoustic Radiation from an Automotive Gear Box, SAE Technical Paper 2007-01-2170, 2007, https://doi.org/10.4271/2007-01-2170.Suche in Google Scholar
[19] Y. Guo, T. Eritenel, T. M. Ericson, and R. G. Parker, “Vibro-acoustic propagation of gear dynamics in a gear-bearing-housing system,” J. Sound Vib., vol. 333, pp. 5762–5785, 2014, https://doi.org/10.1016/j.jsv.2014.05.055.Suche in Google Scholar
[20] V. Kumar Ambarisha, S.-E. Chen, S. Vijayakar, and J. Mendoza, Time-domain Dynamic Analysis of Helical Gears with Reduced Housing Model, SAE Technical Paper 2013-01-1898, 2v013, https://doi.org/10.4271/2013-O1-1898.Suche in Google Scholar
[21] J.-S. Choil, H.-A. Leel, and J.-Y. Lee, “Structural optimization of an automobile transmission case to minimize radiation noise using the model reduction technique,” J. Mech. Sci. Technol., vol. 25, no. 5, pp. 1247–1255, 2011, https://doi.org/10.1007/s12206-011-0135-3.Suche in Google Scholar
[22] T. Ide, M. Otomori, J. P. Leiva, and B. Watson, “Structural optimization methods and techniques to design light and efficient automatic transmission of vehicles with low radiated noise,” Struct. Multidiscip. Optim., vol. 50, pp. 1137–1150, 2014, https://doi.org/10.1007/s00158-014-1143-6.Suche in Google Scholar
[23] X. Wang, Finite Element Method, Beijing, Tsinghua University Press, 2003.Suche in Google Scholar
[24] W. Yang, X. Tang, and X. Chen, “Nonlinear modelling and transient dynamics analysis of a hoist equipped with a two-stage planetary gear transmission system,” J. Vibroeng., vol. 17, pp. 1392–8716, 2015.Suche in Google Scholar
[25] X. Tang, L. Zou, W. Yang, Y. Huang, and H. Wang, “Novel mathematical modelling methods of comprehensive mesh stiffness for spur and helical gears,” Appl. Math. Model., vol. 64, pp. 524–540, 2018, https://doi.org/10.1016/j.apm.2018.08.003.Suche in Google Scholar
[26] X. Zhang, X. Tang, and W. Yang, “Analysis of transmission error and load distribution of a hoist two-stage planetary gear system,” in Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, vol. 233, 1, 2019, pp. 3–16.10.1177/1464419318770886Suche in Google Scholar
[27] Y. Qin, X. Tang, T. Jia, et al.., “Noise and vibration suppression in hybrid electric vehicles: state of the art and challenges,” Renew. Sust. Energy Rev., vol. 124, p. 109782, 2020, https://doi.org/10.1016/j.rser.2020.109782.Suche in Google Scholar
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Original Research Articles
- Numerical investigation of the solutions of Schrödinger equation with exponential cubic B-spline finite element method
- A note on optimal systems of certain low-dimensional Lie algebras
- Optimal control of nonlinear systems with dynamic programming
- Drive-train selection criteria for n-dof manipulators: basis for modular serial robots library
- Robust stabilization control of a spatial inverted pendulum using integral sliding mode controller
- Research on the vibro-acoustic propagation characteristics of a large mining two-stage planetary gear reducer
- Modeling and analysis of dynamics for a 3D mixed Lorenz system with a damped term
Artikel in diesem Heft
- Frontmatter
- Original Research Articles
- Numerical investigation of the solutions of Schrödinger equation with exponential cubic B-spline finite element method
- A note on optimal systems of certain low-dimensional Lie algebras
- Optimal control of nonlinear systems with dynamic programming
- Drive-train selection criteria for n-dof manipulators: basis for modular serial robots library
- Robust stabilization control of a spatial inverted pendulum using integral sliding mode controller
- Research on the vibro-acoustic propagation characteristics of a large mining two-stage planetary gear reducer
- Modeling and analysis of dynamics for a 3D mixed Lorenz system with a damped term