Startseite Technik Existence of Solutions to Boundary Value Problems for a Class of Nonlinear Difference Systems
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Existence of Solutions to Boundary Value Problems for a Class of Nonlinear Difference Systems

  • Tao Zhou , Xia Liu EMAIL logo und Haiping Shi
Veröffentlicht/Copyright: 26. Juni 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This paper is devoted to investigate a question of the existence of solutions to boundary value problems for a class of nonlinear difference systems. The proof is based on the notable mountain pass lemma in combination with variational technique. By using the critical point theory, some new existence criteria are obtained.

MSC 2010: 39A10; 47J30; 58E05

Funding statement: This project is supported by the National Natural Science Foundation of China (No. 11501194). This work was carried out while visiting Central South University.

Acknowledgements

The author Haiping Shi wishes to thank Professor Xianhua Tang for his invitation.

References

[1] R. P. Agarwal, D. O’Regan, P. J. Y. Wong, Positive solutions of differential, difference and integral equations, Kluwer Academic, Dordrecht, 1999.10.1007/978-94-015-9171-3Suche in Google Scholar

[2] C. D. Ahlbrandt, A. C. Peterson. Discrete hamiltonian systems: difference equations, continued fraction and Riccati equations, Kluwer Academic Publishers, Dordrecht, 1996.10.1007/978-1-4757-2467-7Suche in Google Scholar

[3] Z. AlSharawi, J. M. Cushing, S. Elaydi, Theory and applications of difference equations and discrete dynamical systems, Springer, New York, 2014.10.1007/978-3-662-44140-4Suche in Google Scholar

[4] G. M. Bisci, D. Repovš, Existence of solutions for p-Laplacian discrete equations, Appl. Math. Comput. 242 (2014), 454–461.10.1016/j.amc.2014.05.118Suche in Google Scholar

[5] X. C. Cai, J. S. Yu, Existence theorems for second-order discrete boundary value problems, J. Math. Anal. Appl. 320 (2) (2006), 649–661.10.1016/j.jmaa.2005.07.029Suche in Google Scholar

[6] P. Chen, X. F. He, X. H. Tang, Infinitely many solutions for a class of fractional Hamiltonian systems via critical point theory, Math. Methods Appl. Sci. 39 (5) (2016), 1005–1019.10.1002/mma.3537Suche in Google Scholar

[7] P. Chen, X. H. Tang, Existence of solutions for a class of second-order p-Laplacian systems with impulsive effects, Appl. Math. 59 (5) (2014), 543–570.10.1007/s10492-014-0071-5Suche in Google Scholar

[8] P. Chen, Z. M. Wang, Infinitely many homoclinic solutions for a class of nonlinear difference equations, Electron. J. Qual. Theory Differ. Equ. 2012 (47) (2012), 1–18.10.14232/ejqtde.2012.1.47Suche in Google Scholar

[9] X. Q. Deng, Nonexistence and existence results for a class of fourth-order difference mixed boundary value problems, J. Appl. Math. Comput. 45 (1) (2014), 1–14.10.1007/s12190-013-0707-8Suche in Google Scholar

[10] C. J. Guo, R. P. Agarwal, C. J. Wang, D. O’Regan, The existence of homoclinic orbits for a class of first order superquadratic Hamiltonian systems, Mem. Differential Equations Math. Phys. 61 (2014), 83–102.Suche in Google Scholar

[11] C. J. Guo, D. O’Regan, Y. T. Xu, R. P. Agarwal. Existence of periodic solutions for a class of second-order superquadratic delay differential equations. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 21 (5) (2014) 405–419.Suche in Google Scholar

[12] C. J. Guo, D. O’Regan, Y. T. Xu, R. P. Agarwal, Existence of homoclinic orbits of a class of second-order differential difference equations, Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms 20 (2013), 675–690.Suche in Google Scholar

[13] M. Jia, Standing waves for the discrete nonlinear Schrödinger equations, Electron. J. Differ. Equ. 2016 (183) (2016), 1–9.10.1186/s13662-016-1003-3Suche in Google Scholar

[14] J. H. Leng, Existence of periodic solutions for a higher order nonlinear difference equation, Electron. J. Differ. Equ. 2016 (134) (2016), 1–10.Suche in Google Scholar

[15] J. H. Leng, Periodic and subharmonic solutions for 2nth-order ϕc-Laplacian difference equations containing both advance and retardation, Indag. Math. (N.S.) 27 (4) (2016), 902–913.10.1016/j.indag.2016.05.002Suche in Google Scholar

[16] X. Liu, Y. B. Zhang, H. P. Shi, Nonexistence and existence results for a class of fourth-order difference Neumann boundary value problems, Indag. Math. (N.S.) 26 (1) (2015), 293–305.10.1016/j.indag.2014.05.001Suche in Google Scholar

[17] X. Liu, Y. B. Zhang, H. P. Shi, Existence of periodic solutions for a class of nonlinear difference equations, Qual. Theory Dyn. Syst. 14 (1) (2015), 51–69.10.1007/s12346-014-0125-9Suche in Google Scholar

[18] X. Liu, Y. B. Zhang, H. P. Shi, Nonexistence and existence results for a class of fourth-order difference Dirichlet boundary value problems, Math. Methods Appl. Sci. 38 (4) (2015), 691–700.10.1002/mma.3100Suche in Google Scholar

[19] J. Mawhin, M. Willem, Critical point theory and hamiltonian systems, Springer, New York, 1989.10.1007/978-1-4757-2061-7Suche in Google Scholar

[20] P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, Amer. Math. Soc., Providence, RI, New York, 1986.10.1090/cbms/065Suche in Google Scholar

[21] S. Salahshour, A. Ahmadian, M. Senu, D. Baleanu, P. Agarwal, On analytical solutions of the fractional differential equation with uncertainty: application to the Basset problem, Entropy 17 (2) (2015), 885–902.10.3390/e17020885Suche in Google Scholar

[22] H. P. Shi, X. Liu, Y. B. Zhang, Periodic solutions for a class of nonlinear difference equations, Hokkaido Math. J. 45 (1) (2016), 109–126.10.14492/hokmj/1470080751Suche in Google Scholar

[23] H. P. Shi, X. Liu, Y. B. Zhang, Homoclinic orbits for a class of nonlinear difference equations, Azerb. J. Math. 6 (1) (2016), 2218–6816.Suche in Google Scholar

[24] H. P. Shi, Y. B. Zhang, Standing wave solutions for the discrete nonlinear Schrödinger equations with indefinite sign subquadratic potentials, Appl. Math. Lett. 58 (2016), 95–102.10.1016/j.aml.2016.02.010Suche in Google Scholar

[25] A. N. Sharkovsky, Y. L. Maistrenko, E. Y. Romanenko. Difference equations and their applications, Kluwer Academic Publishers, Dordrecht, 1993.10.1007/978-94-011-1763-0Suche in Google Scholar

[26] T. Thandapani, K. Ravi, Bounded and monotone properties of solutions of second-order quasilinear forced difference equations, Comput. Math. Appl. 38 (2) (1999), 113–121.10.1016/S0898-1221(99)00186-8Suche in Google Scholar

[27] X. M. Zhang, P. Agarwal, Z. H. Liu, H. Peng, The general solution for impulsive differential equations with Riemann-Liouville fractional-order q ∈ (1,2), Open Math. 13 (1) (2015), 908–923.10.1515/math-2015-0073Suche in Google Scholar

[28] X. M. Zhang, P. Agarwal, Z. H. Liu, H. Peng, F. You, Y. J. Zhu, Existence and uniqueness of solutions for stochastic differential equations of fractional-order q > 1 with finite delays, Adv. Difference Equ. 2017 (123) (2017), 1–18.10.1186/s13662-016-1057-2Suche in Google Scholar

[29] Z. Zhou, D. F. Ma, Multiplicity results of breathers for the discrete nonlinear Schrödinger equations with unbounded potentials, Sci. China Math. 58 (4) (2015), 781–790.10.1007/s11425-014-4883-2Suche in Google Scholar

[30] Z. Zhou, M. T. Su, Boundary value problems for 2n-order ϕc-Laplacian difference equations containing both advance and retardation, Appl. Math. Lett. 41 (2015), 7–11.10.1016/j.aml.2014.10.006Suche in Google Scholar

[31] H. Zhou, L. Yang, P. Agarwal, Solvability for fractional p-Laplacian differential equations with multipoint boundary conditions at resonance on infinite interval, J. Appl. Math. Comput. 53 (1–2) (2017), 51–76.10.1007/s12190-015-0957-8Suche in Google Scholar

[32] Z. Zhou, J. S. Yu, Homoclinic solutions in periodic nonlinear difference equations with superlinear nonlinearity, Acta Math. Sin. (Engl. Ser.) 29 (9) (2013), 1809–1822.10.1007/s10114-013-0736-0Suche in Google Scholar

[33] Z. Zhou, J. S. Yu, On the existence of homoclinic solutions of a class of discrete nonlinear periodic systems, J. Differ. Equ. 249 (5) (2010), 1199–1212.10.1016/j.jde.2010.03.010Suche in Google Scholar

[34] Z. Zhou, J. S. Yu, Y. M. Chen, Homoclinic solutions in periodic difference equations with saturable nonlinearity, Sci. China Math. 54 (1) (2011), 83–93.10.1007/s11425-010-4101-9Suche in Google Scholar

Received: 2017-06-29
Accepted: 2018-05-20
Published Online: 2018-06-26
Published in Print: 2018-07-26

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 8.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/ijnsns-2017-0138/html
Button zum nach oben scrollen