Abstract
The reduction of HfO2 to produce HfB2 powder currently represents the most cost-effective synthesis method. However, reduction processes employing B2O3, B4C or elemental B invariably involve volatile B2O3 species, which damage high-temperature furnaces. This work reports an alternative approach using BN/C as reductants in a spark plasma sintering (SPS) furnace to synthesize HfB2. The reaction mechanism involves two sequential steps: initial reduction of HfO2 by C to form non-stoichiometric HfC1-x, followed by reaction between HfC1-x and BN to yield HfB2. At 1,600 °C, phase-pure HfB2 powder with ultralow oxygen content (0.47 wt.%) was obtained. The synthesized powder exhibits submicron particle size (d50 = 0.184 μm) and a distinctive bimodal distribution pattern.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The authors state no conflict of interest.
-
Research funding: None declared.
-
Data availability: The raw data can be obtained on request from the corresponding author.
References
1. Binner, J.; Porter, M.; Baker, B.; Zou, J., Ramanujam, P. Int. Mater. Rev. 2019, 65 (7), 389–444. https://doi.org/10.1080/09506608.2019.1652006Suche in Google Scholar
2. Zhao, J.; Zhang, X.; Ma, Z.; Wang, D.; Jin, X.; Ran, S. J. Adv. Ceram. 2024, 13 (4), 518–528. https://doi.org/10.26599/JAC.2024.9220874Suche in Google Scholar
3. Luo, H.; Zeng, Y.; Liang, H.; Pu, J.; Fang, L.; Zhang, W. J. Am. Ceram. Soc. 2025, 108 (9), e20667. https://doi.org/10.1111/jace.20667Suche in Google Scholar
4. Lv, Y.; Liu, Y.; Zhang, B.; Sun, X.; Cao, Y.; Wu, Y. J. Eur. Ceram. Soc. 2025, 45 (4), 117074. https://doi.org/10.1016/j.jeurceramsoc.2024.117074Suche in Google Scholar
5. Blum, Y. D.; Marschall, J.; Hui, D.; Adair, B.; Vestel, M. J. Am. Ceram. Soc. 2008, 91 (5), 1481–1488. https://doi.org/10.1111/j.1551-2916.2008.02329.xSuche in Google Scholar
6. Bégin-Colin, S.; Caër, G. L.; Barraud, E.; Humbert, O. J. Mater. Sci. 2004, 39 (16), 5081–5089. https://doi.org/10.1023/B:JMSC.0000039188.17862.5810.1023/B:JMSC.0000039188.17862.58Suche in Google Scholar
7. Chen, L.; Gu, Y.; Shi, L.; Yang, Z.; Ma, J.; Qian, Y. J. Alloys Compd. 2004, 368 (1), 353–356. https://doi.org/10.1016/j.jallcom.2003.08.086Suche in Google Scholar
8. Wang, T.; Wang, Z.; Hu, C.; Li, X.; Huang, Z.; Hu, X.; Li, Y. Appl. Surf. Sci. 2022, 606, 154995. https://doi.org/10.1016/j.apsusc.2022.154995Suche in Google Scholar
9. Venugopal, S.; Boakye, E. E.; Paul, A.; Keller, K.; Mogilevsky, P.; Vaidhyanathan, B.; Binner, J. G. P.; Katz, A.; Brown, P. M. J. Am. Ceram. Soc. 2014, 97 (1), 92–99. https://doi.org/10.1111/jace.12654Suche in Google Scholar
10. Ni, D.-W.; Zhang, G.-J.; Kan, Y.-M.; Wang, P.-L. J. Am. Ceram. Soc. 2008, 91 (8), 2709–2712. https://doi.org/10.1111/j.1551-2916.2008.02466.xSuche in Google Scholar
11. Guo-Jun, Z.; Wei-Ming, G.; De-Wei, N.; Yan-Mei, K. J. Phys.: Conf. Ser. 2009, 176 (1), 012041. https://doi.org/10.1088/1742-6596/176/1/012041Suche in Google Scholar
12. Liu, D.; Fu, Q.; Chu, Y. J. Adv. Ceram. 2020, 9 (1), 35–44. https://doi.org/10.1007/s40145-019-0345-1Suche in Google Scholar
13. Guo, W.-M.; Yang, Z.-G.; Zhang, G.-J. Mater. Lett. 2012, 83, 52-55. https://doi.org/10.1016/j.matlet.2012.06.012Suche in Google Scholar
14. Ohkubo, T.; Ono, T.; Nishiyama, K.; Niwa, S.; Sakai, H.; Koishi, M.; Abe, M. J. Jpn. Soc. Powder Powder Metall. 2005, 52 (9), 664–669. https://doi.org/10.2497/jjspm.52.664Suche in Google Scholar
15. Jalaly, M.; Gotor, F. J.; Sayagués, M. J. J. Am. Ceram. Soc. 2018, 101 (4), 1412–1419. https://doi.org/10.1111/jace.15297Suche in Google Scholar
16. Zhang, J.; Xiong, S.; Wang, J.; Ni, Y. e.; Ke, C. J. Am. Ceram. Soc. 2021, 104 (2), 785–792. https://doi.org/10.1111/jace.17498.Suche in Google Scholar
17. Yan, C.; Liu, R.; Zhang, C.; Cao, Y.; Long, X.; Fahrenholtz, W. J. Am. Ceram. Soc. 2016, 99 (1), 16–19. https://doi.org/10.1111/jace.14027Suche in Google Scholar
18. Wang, D.; Ran, S.; Shen, L.; Sun, H.; Huang, Q. J. Eur. Ceram. Soc. 2015, 35 (3), 1107–1112. https://doi.org/10.1016/j.jeurceramsoc.2014.10.018.Suche in Google Scholar
19. Ran, S.; Biest, O. V. d.; Vleugels, J. J. Am. Ceram. Soc. 2010, 93 (6), 1586–1590. https://doi.org/10.1111/j.1551-2916.2010.03747.x.Suche in Google Scholar
20. Wang, H.; Lee, S.-H.; Kim, H.-D.; Oh, H.-C.; Lee, S.; Kim, H.; Oh, H. Int. J. Appl. Ceram. Tec. 2014, 11 (2), 359–363. https://doi.org/10.1111/ijac.12016.Suche in Google Scholar
© 2025 Walter de Gruyter GmbH, Berlin/Boston