Startseite Structural and optical characterizations of zinc oxide nanostructures synthesized at low temperatures via sol–gel technique
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Structural and optical characterizations of zinc oxide nanostructures synthesized at low temperatures via sol–gel technique

  • Prakash Yadav , Kumar Gaurav , Hari Shankar Tewari und Anurag Srivastava ORCID logo EMAIL logo
Veröffentlicht/Copyright: 27. August 2025
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The present study demonstrates the feasibility of synthesizing high-quality ZnO nanostructures at extremely low temperatures using the sol–gel method. The synthesized nanostructured samples are analysed through various analytical techniques such as X-ray diffraction, UV–Vis spectroscopy, field emission scanning electron microscopy, and zeta potential measurements. The X-ray diffraction analysis revealed highly intense, distinct peaks corresponding to the (100) (002), and (101) crystallographic planes, confirming the presence of a hexagonal wurtzite structure for all synthesized samples. All the samples exhibited maximum absorption peaks at wavelengths of 383 nm, 368 nm, and 358 nm, with corresponding band gap energies 2.93 eV, 3.58 eV, and 3.68 eV. The field effect scanning electron microscopy analysis revealed that the synthesized samples (1) (II), and (III) displayed a microstructure like a nanoparticle. Furthermore, zeta potential measurements provided insights into the surface charge characteristics of the samples. This approach can lead to the development of cost-effective, energy-efficient, and scalable processes for the fabrication of advanced materials and devices in optoelectronics, sensors, catalysis, and biomedical applications. Further research is needed to optimize the synthesis parameters and explore the full potential of these low-temperature-synthesized ZnO nanostructures in various applications.


Corresponding author: Anurag Srivastava, Department of Engineering Sciences, MSSD Lab, Advanced Material Research Group (AMRG), ABV-Indian Institute of Information Technology and Management, Gwalior, Madhya Pradesh, 474015, India, E-mail:

Acknowledgments

The authors gratefully acknowledge the support and infrastructure provided by the ABV-Indian Institute of Information Technology and Management, Gwalior, which facilitated the successful execution of this research. The authors would like to acknowledge the Central Instrument facilities of the Indian Institute of Science Education and Research (IISER) Bhopal for generously providing access to the X-ray diffraction (XRD) and zeta potential characterization, and central research facility, Delhi University, for FE-SEM facilities. Furthermore, PY sincerely thanks the Ministry of Education, India, for the fellowship awarded.

  1. Research ethics: The reported work in this manuscript has not been submitted or under consideration to any journal or conference.

  2. Informed consent: Not applicable.

  3. Author contributions: “A. S.: Conceptualization, Supervision, Review, and Editing” “P. Y.: Experimentation, Result analysis, and Manuscript writing” “K. G.: Scientific discussion and Editing” “H. S. T: Result verification and review”.

  4. Use of Large Language Models, AI, and Machine Learning Tools: The authors declare that no large language models (LLMs), artificial intelligence (AI), or machine learning (ML) tools were used in the preparation, writing, or editing of this manuscript.

  5. Conflict of interest: The authors have no relevant financial or non-financial interests to disclose.

  6. Research funding: The authors declare that no funds, grants, or other support were received for this work.

  7. Data availability: Not applicable.

References

1. Gerbreders, V.; Krasovska, M.; Sledevskis, E.; Gerbreders, A.; Mihailova, I.; Tamanis, E.; Ogurcovs, A. Hydrothermal Synthesis of ZnO Nanostructures with Controllable Morphology Change. CrystEngComm 2020, 22 (8), 1346–1358. https://doi.org/10.1039/c9ce01556f.Suche in Google Scholar

2. Hasnidawani, J. N.; Azlina, H. N.; Norita, H.; Bonnia, N. N.; Ratim, S.; Ali, E. S. Synthesis of ZnO Nanostructures Using Sol–Gel Method. Procedia Chem 2016, 19, 211–216. https://doi.org/10.1016/j.proche.2016.03.095.Suche in Google Scholar

3. Navarrete, E.; Güell, F.; Martínez-Alanis, P. R.; Llobet, E. Chemical Vapour Deposited ZnO Nanowires for Detecting Ethanol and NO2. J. Alloys Compd. 2022, 890 (2), 161923. https://doi.org/10.1016/j.jallcom.2021.161923.Suche in Google Scholar

4. Henni, A.; Harfouche, N.; Karar, A.; Zerrouki, D.; Perrin, F. X.; Rosei, F. Synthesis of Graphene–ZnO Nanocomposites by a One-step Electrochemical Deposition for Efficient Photocatalytic Degradation of Organic Pollutant. Solid State Sci. 2019, 98, 106039. https://doi.org/10.1016/j.solidstatesciences.2019.106039.Suche in Google Scholar

5. Bazazi, S.; Arsalani, N.; Khataee, A.; Tabrizi, A. G. Comparison of Ball Milling-Hydrothermal and Hydrothermal Methods for Synthesis of ZnO Nanostructures and Evaluation of Their Photocatalytic Performance. J. Ind. Eng. Chem. 2018, 62 (2017), 265–272. https://doi.org/10.1016/j.jiec.2018.01.004.Suche in Google Scholar

6. Song, L.; Wang, Y.; Ma, J.; Zhang, Q.; Shen, Z. Core/Shell Structured Zn/ZnO Nanoparticles Synthesized by Gaseous Laser Ablation with Enhanced Photocatalysis Efficiency. Appl. Surf. Sci. 2018, 442, 101–105. https://doi.org/10.1016/j.apsusc.2018.02.143.Suche in Google Scholar

7. El Faroudi, L.; Saadi, L.; Barakat, A.; Mansori, M.; Abdelouahdi, K.; Solhy, A. Facile and Sustainable Synthesis of ZnO Nanoparticles: Effect of Gelling Agents on ZnO Shapes and Their Photocatalytic Performance. ACS Omega 2023, 8 (28), 24952–24963. https://doi.org/10.1021/acsomega.3c01491.Suche in Google Scholar PubMed PubMed Central

8. Bindu, P.; Thomas, S. Estimation of Lattice Strain in ZnO Nanoparticles: X-Ray Peak Profile Analysis. J. Theor. Appl. Phys. 2014, 8 (4), 123–134. https://doi.org/10.1007/s40094-014-0141-9.Suche in Google Scholar

9. John, R. A. B.; Vijayan, K.; Septiani, N. L. W.; Hardiansyah, A.; Kumar, A. R.; Yuliarto, B.; Hermawan, A. Gas-sensing Mechanisms and Performances of MXenes and MXene-Based Heterostructures. Sensors (Basel) 2023, 23 (21). https://doi.org/10.3390/s23218674.Suche in Google Scholar PubMed PubMed Central

10. Lecarme, L.; Consonni, V.; Lafolet, F.; Cossuet, T.; Mermoux, M.; Sauvage, F.; Nourdine, A.; Alloin, F.; Leprêtre, J. C. ZnO Nanowires as a Promotor of High Photoinduced Efficiency and Voltage Gain for Cathode Battery Recharging. ACS Appl. Energy Mater. 2019, 2 (9), 6254–6262. https://doi.org/10.1021/acsaem.9b00783.Suche in Google Scholar

11. Samadipakchin, P.; Mortaheb, H. R.; Zolfaghari, A. ZnO Nanotubes: Preparation and Photocatalytic Performance Evaluation. J. Photochem. Photobiol. A Chem. 2017, 337, 91–99. https://doi.org/10.1016/j.jphotochem.2017.01.018.Suche in Google Scholar

12. Ali, A.; Phull, A. R.; Zia, M. Elemental Zinc to Zinc Nanoparticles: Is ZnO NPs Crucial for Life? Synthesis, Toxicological, and Environmental Concerns. Nanotechnol. Rev. 2018, 7 (5), 413–441. https://doi.org/10.1515/ntrev-2018-0067.Suche in Google Scholar

13. Rodwihok, C.; Choopun, S.; Ruankham, P.; Gardchareon, A.; Phadungdhitidhada, S.; Wongratanaphisan, D. UV Sensing Properties of ZnO Nanowires/Nanorods. Appl. Surf. Sci. 2019, 477, 159–165. https://doi.org/10.1016/j.apsusc.2017.11.056.Suche in Google Scholar

14. Aljaafari, A.; Ahmed, F.; Awada, C.; Shaalan, N. M. Flower-Like ZnO Nanorods Synthesized by Microwave-Assisted One-Pot Method for Detecting Reducing Gases: Structural Properties and Sensing Reversibility. Front. Chem. 2020, 8 (July), 1–11. https://doi.org/10.3389/fchem.2020.00456.Suche in Google Scholar PubMed PubMed Central

15. Kaya, S.; Ozturk, O.; Arda, L. Roughness and Bearing Analysis of ZnO Nanorods. Ceram. Int. 2020, 46 (10), 15183–15196. https://doi.org/10.1016/j.ceramint.2020.03.055.Suche in Google Scholar

16. Dewi, A. S. P.; Mufti, N.; Fibriyanti, A. A.; Diantoro, M.; Taufiq, A.; Hidayat, A.; Sunaryono; Nur, H. The Improvement of Triboelectric Effect of ZnO Nanorods/PAN in Flexible Nanogenerator by Adding TiO2 Nanoparticle. J. Polym. Res. 2020, 27 (6). https://doi.org/10.1007/s10965-020-02121-5.Suche in Google Scholar

17. Aljaafari, A. Size Dependent Photocatalytic Activity of ZnO Nanosheets for Degradation of Methyl Red. Front. Mater. 2020, 7 (November), 1–7. https://doi.org/10.3389/fmats.2020.562693.Suche in Google Scholar

18. Ortiz-Casas, B.; Galdámez-Martínez, A.; Gutiérrez-Flores, J.; Baca Ibañez, A.; Kumar Panda, P.; Santana, G.; de la Vega, H. A.; Suar, M.; Gutiérrez Rodelo, C.; Kaushik, A.; Kumar Mishra, Y.; Dutt, A. Bio-Acceptable 0D and 1D ZnO Nanostructures for Cancer Diagnostics and Treatment. Mater. Today 2021, 50 (November), 533–569. https://doi.org/10.1016/j.mattod.2021.07.025.Suche in Google Scholar

19. Seo, Y. S.; Oh, S. G. Controlling the Recombination of Electron-Hole Pairs by Changing the Shape of ZnO Nanorods via Sol-Gel Method Using Water and Their Enhanced Photocatalytic Properties. Korean J. Chem. Eng. 2019, 36 (12), 2118–2124. https://doi.org/10.1007/s11814-019-0401-0.Suche in Google Scholar

20. Chen, X.; Zhang, C.; Song, B.; He, P. Theoretical Study on the Structural, Electronic, and Optical Properties of BnCn (N = 1-13) Clusters. Mater. Res. Express 2019, 7 (1), 1556–1559. https://doi.org/10.1088/2053-1591/ab61a4.Suche in Google Scholar

21. Alshehri, N. A.; Lewis, A. R.; Pleydell-Pearce, C.; Maffeis, T. G. G. Investigation of the Growth Parameters of Hydrothermal ZnO Nanowires for Scale up Applications. J. Saudi Chem. Soc. 2018, 22 (5), 538–545. https://doi.org/10.1016/j.jscs.2017.09.004.Suche in Google Scholar

22. Loyola Poul Raj, I.; Jegatha Christy, A.; David Prabu, R.; Chidhambaram, N.; Shkir, M.; AlFaify, S.; Khan, A. Significance of Ni Doping on Structure-Morphology-Photoluminescence, Optical and Photocatalytic Activity of CBD Grown ZnO Nanowires for Opto-Photocatalyst Applications. Inorg. Chem. Commun. 2020, 119, 108082. https://doi.org/10.1016/j.inoche.2020.108082.Suche in Google Scholar

23. Mangala Nagasundari, S.; Muthu, K.; Kaviyarasu, K.; Farraj, D. A. A.; Alkufeidy, R. M. Current Trends of Silver Doped Zinc Oxide Nanowires Photocatalytic Degradation for Energy and Environmental Application. Surfaces and Interfaces 2021, 23 (January), 100931. https://doi.org/10.1016/j.surfin.2021.100931.Suche in Google Scholar

24. Reyhani, A.; Gholizadeh, A.; vahedi, V.; Khanlari, M. R. Effect of Gamma Radiation on the Optical and Structural Properties of ZnO Nanowires with Various Diameters. Opt. Mater. (Amst). 2018, 75, 236–242. https://doi.org/10.1016/j.optmat.2017.10.027.Suche in Google Scholar

25. Sekar, K.; Doineau, R.; Mayarambakam, S.; Schmaltz, B.; Poulin-Vittrant, G. Control of ZnO Nanowires Growth in Flexible Perovskite Solar Cells: A Mini-Review. Heliyon 2024, 10 (3). https://doi.org/10.1016/j.heliyon.2024.e24706.Suche in Google Scholar PubMed PubMed Central

26. Sinju, K. R.; Bhangare, B.; Pathak, A.; Patil, S. J.; Ramgir, N. S.; Debnath, A. K.; Aswal, D. K. ZnO Nanowires Based E-Nose for the Detection of H2S and NO2 Toxic Gases. Mater. Sci. Semicond. Process. 2022, 137 (2), 106235. https://doi.org/10.1016/j.mssp.2021.106235.Suche in Google Scholar

27. Srinivasan, P.; Rayappan, J. B. B. Growth of Eshelby Twisted ZnO Nanowires through Nanoflakes & Nanoflowers: A Room Temperature Ammonia Sensor. Sensors Actuators, B Chem. 2018, 277 (September), 129–143. https://doi.org/10.1016/j.snb.2018.09.003.Suche in Google Scholar

28. Wu, Z.; Cheng, T.; Wang, Z. L. Self-Powered Sensors and Systems Based on Nanogenerators. Sensors (Switzerland) 2020, 20 (10). https://doi.org/10.3390/s20102925.Suche in Google Scholar PubMed PubMed Central

29. Wu, G. S.; Xie, T.; Yuan, X. Y.; Li, Y.; Yang, L.; Xiao, Y. H.; Zhang, L. D. Controlled Synthesis of ZnO Nanowires or Nanotubes via Sol-Gel Template Process. Solid State Commun. 2005, 134 (7), 485–489. https://doi.org/10.1016/j.ssc.2005.02.015.Suche in Google Scholar

30. Patil, N. B.; Nimbalkar, A. R.; Patil, M. G. ZnO Thin Film Prepared by a Sol-Gel Spin Coating Technique for NO2 Detection. Mater. Sci. Eng. B 2018, 227 (2), 53–60. https://doi.org/10.1016/j.mseb.2017.10.011.Suche in Google Scholar

31. Khan, M. A. M.; Kumar, S.; Alhazaa, A. N.; Al-Gawati, M. A. Modifications in Structural, Morphological, Optical and Photocatalytic Properties of ZnO:Mn Nanoparticles by Sol-Gel Protocol. Mater. Sci. Semicond. Process. 2018, 87 (April), 134–141. https://doi.org/10.1016/j.mssp.2018.07.016.Suche in Google Scholar

32. Li, X.; Liang, P.; Wang, L.; Yu, F. Preparation and Characterization of High Uniformity Zinc Oxide Nanosheets. Front. Optoelectron. 2014, 7 (4), 509–512. https://doi.org/10.1007/s12200-014-0400-z.Suche in Google Scholar

33. Ahmed, S.; Sinha, S. K. Studies on Nanomaterial-Based P-type Semiconductor Gas Sensors. Environ. Sci. Pollut. Res. 2023, 30 (10), 24975–24986. https://doi.org/10.1007/s11356-022-21218-6.Suche in Google Scholar PubMed

34. Young, S. J.; Liu, Y. H.; Chien, J. T. Improving Field Electron Emission Properties of ZnO Nanosheets with Ag Nanoparticles Adsorbed by Photochemical Method. ACS Omega 2018, 3 (7), 8135–8140. https://doi.org/10.1021/acsomega.8b01041.Suche in Google Scholar PubMed PubMed Central

35. Zhang, S. L.; Lim, J. O.; Huh, J. S.; Noh, J. S.; Lee, W. Two-Step Fabrication of ZnO Nanosheets for High-Performance VOCs Gas Sensor. Curr. Appl. Phys. 2013, 13 (4 SUPPL.2), S156–S161. https://doi.org/10.1016/j.cap.2012.12.021.Suche in Google Scholar

36. Naik, E. I.; Naik, H. S. B.; Viswanath, R.; Kirthan, B. R.; Prabhakara, M. C. Effect of Zirconium Doping on the Structural, Optical, Electrochemical and Antibacterial Properties of ZnO Nanoparticles Prepared by Sol-Gel Method. Chem. Data Collect. 2020, 29, 100505. https://doi.org/10.1016/j.cdc.2020.100505.Suche in Google Scholar

37. Al-Bataineh, Q. M.; Alsaad, A. M.; Ahmad, A. A.; Al-Sawalmih, A. Structural, Electronic and Optical Characterization of ZnO Thin Film-Seeded Platforms for ZnO Nanostructures: Sol–Gel Method versus Ab Initio Calculations. J. Electron. Mater. 2019, 48 (8), 5028–5038. https://doi.org/10.1007/s11664-019-07303-6.Suche in Google Scholar

38. Astinchap, B.; Moradian, R.; Nasseri Tekyeh, M. Investigating the Optical Properties of Synthesized ZnO Nanostructures by Sol-Gel: The Role of Zinc Precursors and Annealing Time. Optik (Stuttg) 2016, 127 (20), 9871–9877. https://doi.org/10.1016/j.ijleo.2016.07.067.Suche in Google Scholar

39. Davis, K.; Yarbrough, R.; Froeschle, M.; White, J.; Rathnayake, H. Band Gap Engineered Zinc Oxide Nanostructures: Via a Sol-Gel Synthesis of Solvent Driven Shape-Controlled Crystal Growth. RSC Adv. 2019, 9 (26), 14638–14648. https://doi.org/10.1039/c9ra02091h.Suche in Google Scholar PubMed PubMed Central

40. Naqvi, S. M. A.; Soleimani, H.; Yahya, N.; Irshad, K. Structural and Optical Properties of Chromium Doped Zinc Oxide Nanoparticles Synthesized by. Sol-Gel Method 2014, 1621 (April), 530–537. https://doi.org/10.1063/1.4898517.Suche in Google Scholar

41. Patel, M.; Mishra, S.; Verma, R.; Shikha, D. Synthesis of ZnO and CuO Nanoparticles via Sol Gel Method and its Characterization by Using Various Technique. Discov. Mater. 2022, 2 (1). https://doi.org/10.1007/s43939-022-00022-6.Suche in Google Scholar

42. Barhoum, A.; Van Assche, G.; Rahier, H.; Fleisch, M.; Bals, S.; Delplancked, M. P.; Leroux, F.; Bahnemann, D. Sol-Gel Hot Injection Synthesis of ZnO Nanoparticles into a Porous Silica Matrix and Reaction Mechanism. Mater. Des. 2017, 119, 270–276. https://doi.org/10.1016/j.matdes.2017.01.059.Suche in Google Scholar

43. Irshad, K.; Khan, M. T.; Murtaza, A. Synthesis and Characterization of Transition-Metals-Doped ZnO Nanoparticles by Sol-Gel Auto-Combustion Method. Phys. B Condens. Matter 2018, 543, 1–6. https://doi.org/10.1016/j.physb.2018.05.006.Suche in Google Scholar

44. AlZoubi, T.; Qutaish, H.; Al-Shawwa, E.; Hamzawy, S. Enhanced UV-Light Detection Based on ZnO Nanowires/Graphene Oxide Hybrid Using Cost-Effective Low Temperature Hydrothermal Process. Opt. Mater. (Amst). 2018, 77, 226–232. https://doi.org/10.1016/j.optmat.2018.01.045.Suche in Google Scholar

45. Hsueh, T. J.; Chang, S. J.; Hsu, C. L.; Lin, Y. R.; Chen, I. C. ZnO Nanotube Ethanol Gas Sensors. J. Electrochem. Soc. 2008, 155 (9), K152. https://doi.org/10.1149/1.2952535.Suche in Google Scholar

46. Liang, Q.; Qiao, F.; Cui, X.; Hou, X. Controlling the Morphology of ZnO Structures via Low Temperature Hydrothermal Method and Their Optoelectronic Application. Mater. Sci. Semicond. Process. 2019, 89, 154–160. https://doi.org/10.1016/j.mssp.2018.09.007.Suche in Google Scholar

47. Zhang, C.; Zhou, L.; Cheng, P.; Yin, X.; Liu, D.; Li, X.; Guo, H.; Wang, Z. L.; Wang, J. Surface Charge Density of Triboelectric Nanogenerators: Theoretical Boundary and Optimization Methodology. Appl. Mater. Today 2020, 18, 100496. https://doi.org/10.1016/j.apmt.2019.100496.Suche in Google Scholar

48. Chen, H.; Xie, J.; Liu, C.; Hu, X. Structures and Magnetic Properties of ZnS Nanotubes Doped with Cr Atom. Jisuan Wuli/Chinese J. Comput. Phys. 2016, 33 (1), 91–98.Suche in Google Scholar

49. Liu, S.; Zhu, L.; Cao, W.; Li, P.; Zhan, Z.; Chen, Z.; Yuan, X.; Wang, J. Defect-Related Optical Properties of Mg-Doped ZnO Nanoparticles Synthesized via Low Temperature Hydrothermal Method. J. Alloys Compd. 2021, 858. https://doi.org/10.1016/j.jallcom.2020.157654.Suche in Google Scholar

50. Miao, L.; Tanemura, S.; Toh, S.; Kaneko, K.; Tanemura, M. Fabrication, Characterization and Raman Study of Anatase-TiO2 Nanorods by a Heating-Sol-Gel Template Process. J. Cryst. Growth 2004, 264 (1–3), 246–252. https://doi.org/10.1016/j.jcrysgro.2003.12.027.Suche in Google Scholar

51. Mikhailov, O. V. Sol–Gel Technology and Template Synthesis in Thin Gelatin Films. J Sol Gel Sci Technol.2014, 1, 314–327. https://doi.org/10.1007/s10971-014-3468-4.Suche in Google Scholar

52. Tom, K. B.; Lin, S.; Wan, L. F.; Wang, J.; Ahlm, N.; N’Diaye, A. T.; Bustillo, K.; Huang, J.; Liu, Y.; Lou, S.; Chen, R.; Yan, S.; Wu, H.; Jin, D.; Yuan, H.; Prendergast, D.; Yao, J. Solution-Based, Template-Assisted Realization of Large-Scale Graphitic ZnO. ACS Nano 2018, 12 (8), 7554–7561. https://doi.org/10.1021/acsnano.8b03835.Suche in Google Scholar PubMed

53. Parashar, M.; Shukla, V. K.; Singh, R. Metal Oxides Nanoparticles via Sol–Gel Method: A Review on Synthesis, Characterization and Applications. J. Mater. Sci. Mater. Electron. 2020, 31 (5), 3729–3749. https://doi.org/10.1007/s10854-020-02994-8.Suche in Google Scholar

54. Monshi, A.; Foroughi, M. R.; Monshi, M. R. Modified Scherrer Equation to Estimate More Accurately Nano-Crystallite Size Using XRD. World J. Nano Sci. Eng. 2012, 02 (03), 154–160. https://doi.org/10.4236/wjnse.2012.23020.Suche in Google Scholar

55. Sabeeh, S. H.; Jassam, R. H. The Effect of Annealing Temperature and Al Dopant on Characterization of ZnO Thin Films Prepared by Sol-Gel Method. Results Phys 2018, 10 (March), 212–216. https://doi.org/10.1016/j.rinp.2018.05.033.Suche in Google Scholar

56. Agarwal, S.; Jangir, L. K.; Rathore, K. S.; Kumar, M.; Awasthi, K. Morphology-Dependent Structural and Optical Properties of ZnO Nanostructures. Appl. Phys. A Mater. Sci. Process. 2019, 125 (8), 1–7. https://doi.org/10.1007/s00339-019-2852-x.Suche in Google Scholar

57. Belkhaoui, C.; Mzabi, N.; Smaoui, H. Investigations on Structural, Optical and Dielectric Properties of Mn Doped ZnO Nanoparticles Synthesized by Co-precipitation Method. Mater. Res. Bull. 2019, 111, 70–79. https://doi.org/10.1016/j.materresbull.2018.11.006.Suche in Google Scholar

58. Peña-Garcia, R.; Guerra, Y.; Milani, R.; Oliveira, D. M.; Rodrigues, A. R.; Padrón-Hernández, E. The Role of Y on the Structural, Magnetic and Optical Properties of Fe-Doped ZnO Nanoparticles Synthesized by Sol Gel Method. J. Magn. Magn. Mater. 2020, 498, 166085. https://doi.org/10.1016/j.jmmm.2019.166085.Suche in Google Scholar

59. Chitradevi, T.; Jestin Lenus, A.; Victor, J.; Structure, N. Morphology and Luminescence Properties of Sol-Gel Method Synthesized Pure and Ag-Doped ZnO Nanoparticles. Mater. Res. Express 2019, 7 (1). https://doi.org/10.1088/2053-1591/ab5c53.Suche in Google Scholar

60. Sharma, U. S.; Sharma, R. N.; Shah, R. Study of Physical and Magnetic Properties of Zinc Ferrite Nanoparticles. Quantum Matter 2016, 5 (3), 423–425. https://doi.org/10.1166/qm.2016.1332.Suche in Google Scholar

61. Makuła, P.; Pacia, M.; Macyk, W. How to Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV-Vis Spectra. J. Phys. Chem. Lett. 2018, 9 (23), 6814–6817. https://doi.org/10.1021/acs.jpclett.8b02892.Suche in Google Scholar PubMed

62. Huang, D.; Zeng, X.; Zheng, Y.; Wang, X.; Yang, Y. Influence of Process Parameters on Band Gap of Al-Doped ZnO Film. Front. Optoelectron. 2013, 6 (1), 114–121. https://doi.org/10.1007/s12200-012-0302-x.Suche in Google Scholar

63. Lunardi, C. N.; Gomes, A. J.; Rocha, F. S.; De Tommaso, J.; Patience, G. S. Experimental Methods in Chemical Engineering: Zeta Potential. Can. J. Chem. Eng. 2021, 99 (3), 627–639. https://doi.org/10.1002/cjce.23914.Suche in Google Scholar

64. Serrano-Lotina, A.; Portela, R.; Baeza, P.; Alcolea-Rodriguez, V.; Villarroel, M.; Ávila, P. Zeta Potential as a Tool for Functional Materials Development. Catal. Today 2023, 423 (July 2022) https://doi.org/10.1016/j.cattod.2022.08.004.Suche in Google Scholar

65. Shanmuganathan, G.; Banu, I. B. S. Influence of Codoping on the Optical Properties of ZnO Thin Films Synthesized on Glass Substrate by Chemical Bath Deposition Method. Adv. Condens. Matter Phys. 2014, 2014. https://doi.org/10.1155/2014/761960.Suche in Google Scholar

Received: 2024-09-06
Accepted: 2025-01-19
Published Online: 2025-08-27

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 21.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2024-0249/html
Button zum nach oben scrollen