Abstract
The annealing temperature, its duration and quenching rate may play a significant role in tuning the functional properties of high entropy alloys (HEAs). In the present work, Co35Fe10Ni30Ti20Al5 HEA is investigated for the effect of different quenching rates on the phase evolution and magnetic properties. The Co35Fe10Ni30Ti20Al5 HEA was synthesized through mechanical alloying and subsequently annealed at 700 °C for 2 h followed by quenching through different rates-furnace cooled, room temperature (RT-) cooled, ice-bath quenched and liquid-N2 quenched separately. The as-synthesized sample exhibited a mixture of fcc, bcc and a slight content of R-phase. The synthesized phase was found to be maintained after quenching at different rates. The magnetic behavior measured for different samples confirmed the characteristic ferromagnetic nature having coercivity in the range of semi-hard magnetic material. We found variation in the volume phase fraction of the secondary bcc phase and the value of coercivity with the variation of the quenching rate. This study may provide an appropriate idea of the quenching rate for tuning the magnetic property of HEAs.
Acknowledgments
The authors would like to acknowledge the characterization facility of CUSB Gaya and UGC-DAE-CSR, Indore. The authors thank Dr. R.J. Choudhary, UGC-DAE-CSR Indore, for his valuable input and discussion in the present investigations. The authors would also like to acknowledge the financial support from UGC-DAE-CSR through collaborative research scheme project no. CRS/2021–2022/01/381 at CUSB Gaya.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The authors state no conflict of interest.
-
Research funding: UGC-DAE-CSR, Indore, India CRS/2021–2022/01/381.
-
Data availability: Data will be made available on request.
References
1. Murty, B. S.; Yeh, J. W.; Ranganathan, S.; Bhattacharjee, P. P. High Entropy Alloys, 2nd ed.; Elsevier: Netherlands, United Kingdom, United States, 2019.Suche in Google Scholar
2. Yeh, J. W.; Cen, S. K.; Lin, S. J.; Gan, J. Y.; Chin, T. S.; Shun, T. T.; Tsau, C. H.; Chang, S. Y. Adv. Eng. Mater. 2004, 6, 299–303; https://doi.org/10.1002/adem.200300567.Suche in Google Scholar
3. Kumari, P.; Gupta, A. K.; Mohapatra, S. K.; Shahi, R. R.; Singh, D. K.; Singh, S.; Singh, P., Eds. Nanomaterials; Springer: Singapore, 2023.Suche in Google Scholar
4. Kumari, P.; Gupta, A. K.; Mishra, R. K.; Ahmad, M. S.; Shahi, R. R. J. Magn. Magn. Mater. 2022, 554, 169142; https://doi.org/10.1016/j.jmmm.2022.169142.Suche in Google Scholar
5. Mohapatra, S. K.; Kumari, P.; Shahi, R. R.; Yasin, G.; Khan, M. A.; Afifi, M. A.; Nguyen, T. A.; Zhang, Y., Eds. High-Entropy Alloys; Elsevier: Netherlands, United Kingdom, United States, 2024.Suche in Google Scholar
6. Kumari, P.; Mishra, R. K.; Gupta, A. K.; Mohapatra, S. K.; Shahi, R. R. J. Alloy and Compd. 2023, 931, 167451; https://doi.org/10.1016/j.jallcom.2022.167451.Suche in Google Scholar
7. Kumari, P.; Kumar, A.; Mishra, R. K.; Shaz, M. A.; Yadav, T. P.; Shahi, R. R. J. Alloy and Compd. 2023, 960, 170697; https://doi.org/10.1016/j.jallcom.2023.170697.Suche in Google Scholar
8. Shahi, R. R.; Mishra, R. K.; Srivatsan, T. S.; Gupta, M., Eds. High Entropy Alloys: Innovations, Advances and Applications; CRC Press: Boca Raton, 2020.10.1201/9780367374426-22Suche in Google Scholar
9. Mishra, R. K.; Kumari, P.; Gupta, A. K.; Shahi, R. R. Proc. Indian Natl. Sci. Acad. 2023, 89, 347–354; https://doi.org/10.1007/s43538-023-00160-2.Suche in Google Scholar
10. Mishra, R. K.; Shahi, R. R.; Singh, A. R.; Sahay, P. P. Emer. Mater 2020, 3 (5), 655–662; https://doi.org/10.1007/s42247-020-00110-4.Suche in Google Scholar
11. Mishra, R. K.; Shahi, R. R. J. Magn. Magn. Mater. 2020, 516, 167342; https://doi.org/10.1016/j.jmmm.2020.167342.Suche in Google Scholar
12. Mishra, R. K.; Kumari, P.; Gupta, A. K.; Shahi, R. R. J. Alloy. Compd. 2021, 889, 161773; https://doi.org/10.1016/j.jallcom.2021.161773.Suche in Google Scholar
13. Mishra, R. K.; Shahi, R. R. J. Magn. Magn. Mater. 2018, 465, 169–175; https://doi.org/10.1016/j.jmmm.2018.04.056.Suche in Google Scholar
14. Mishra, R. K.; Shahi, R. R. J. Magn. Magn. Mater. 2017, 442, 218–223; https://doi.org/10.1016/j.jmmm.2017.06.124.Suche in Google Scholar
15. Mishra, R. K.; Shahi, R. R. J. Alloy. Compd. 2020, 821, 153534; https://doi.org/10.1016/j.jallcom.2019.153534.Suche in Google Scholar
16. Mohapatra, S. K.; Kumari, P.; Shahi, R. R. Appl. Phys. A 2024, 130 (450), 1–16; https://doi.org/10.1007/s00339-024-07621-5.Suche in Google Scholar
17. Zuo, T.; Gao, M. C.; Ouyang, L.; Yang, X.; Cheng, Y.; Feng, R.; Chen, S.; Liaw, P. K.; Hawk, J. A.; Zhang, Y. Acta Mater. 2017, 130, 10–18; https://doi.org/10.1016/j.actamat.2017.03.013.Suche in Google Scholar
18. Zhou, K. X.; Sun, B. R.; Liu, G. Y.; Li, X. W.; Xin, S. W.; Liaw, P. K.; Shen, T. D. Intermetallics 2020, 122, 106801; https://doi.org/10.1016/j.intermet.2020.106801.Suche in Google Scholar
19. Oboz, M.; Zajdel, P.; Zubko, M.; Swiec, P.; Szubka, M.; Kadziolka-Gawel, M.; Maximenko, A.; Trump, B. A.; Yakovenko, A. A. J. Magn. Magn. Mater. 2024, 589, 171506; https://doi.org/10.1016/j.jmmm.2023.171506.Suche in Google Scholar
20. Orbay, Y.; Rao, Z.; Çakır, A.; Tavşanoğlu, T.; Farle, M.; Acet, M. Acta Mater. 2023, 259; https://doi.org/10.1016/j.actamat.2023.119240.Suche in Google Scholar
21. Duan, J.; Wang, M.; Huang, R.; Miao, J.; Lu, Y.; Wang, T.; Li, T. Sci. China Mater. 2023, 66, 772–779; https://doi.org/10.1007/s40843-022-2171-5.Suche in Google Scholar
22. Wang, M.; Lu, Y.; Zhang, G.; Cui, H.; Xu, D.; Wei, N.; Li, T. Vacuum 2021, 184, 109905; https://doi.org/10.1016/j.vacuum.2020.109905.Suche in Google Scholar
23. Babilas, R.; Lonski, W.; Borylo, P.; Kadziolka-Gawel, M.; Gebara, P.; Radon, A. J. Magn Magn Mater 2020, 502, 166492; https://doi.org/10.1016/j.jmmm.2020.166492.Suche in Google Scholar
24. Jiang, S.; Lin, Z.; Xu, H.; Sun, Y. J. Alloys Compd. 2018, 74 (1), 826–833; https://doi.org/10.1016/j.jallcom.2018.01.247.Suche in Google Scholar
25. Xiao, D. H.; Zhou, P. F.; Wu, W. Q.; Diao, H. Y.; Gao, M. C.; Song, M.; Liaw, P. K. Mater. Des. 2017, 116, 438–447; https://doi.org/10.1016/j.matdes.2016.12.036.Suche in Google Scholar
26. Li, Z.; Gu, Y.; Wang, C.; Pan, M.; Zhang, H.; Wu, Z.; Hou, X.; Tan, X.; Xu, H. J. Alloy. Compd. 2019, 779, 293–300; https://doi.org/10.1016/j.jallcom.2018.11.235.Suche in Google Scholar
27. Gong, M.; Qu, H.; Xu, C.; Guo, W.; Wang, K.; Liu, F.; Bai, J.; Gao, Q.; Zhao, X.; Li, S. Trans. Indian Inst. Met. 2022, 75 (8), 1951–1956; https://doi.org/10.1007/s12666-022-02665-8.Suche in Google Scholar
28. Munitz, A.; Salhov, S.; Hayun, S.; Frage, N. J. Alloy. Compd. 2016, 683, 221–230; https://doi.org/10.1016/j.jallcom.2016.05.034.Suche in Google Scholar
29. Kim, D. G.; Jo, Y. H.; Park, J. M.; Choi, W. M.; Kim, H. S.; Lee, B. J.; Sohn, S. S.; Lee, S. J. Alloy. Compd. 2020, 812, 152111; https://doi.org/10.1016/j.jallcom.2019.152111.Suche in Google Scholar
30. Jia, J.; Wu, Y.; Shi, L.; Wang, R.; Guo, W.; Bu, H.; Shao, Y.; Chen, N.; Yao, K. Materials 2024, 17, 1447; https://doi.org/10.3390/ma17061447.Suche in Google Scholar PubMed PubMed Central
31. Murugaiyan, P.; Mitra, A.; Das, S.; Kamaraj, A.; Roy, R. K.; Panda, A. K. J. Supercond. Nov Magn. 2024, 37, 1635–1646; https://doi.org/10.1007/s10948-024-06789-4.Suche in Google Scholar
32. Takeuchi, A.; Inoue, A. Mater. Trans. 2005, 46 (12), 2817–2829; https://doi.org/10.2320/matertrans.46.2817.Suche in Google Scholar
33. Shahi, R. R.; Yadav, T. P.; Shaz, M. A.; Srivastava, O. N. Int. J. Hydrogen Energy 2008, 33, 6188–6194; https://doi.org/10.1016/j.ijhydene.2008.07.029.Suche in Google Scholar
34. Reed-Hill, R. E.; Abbaschian, R. Physical Metallurgy Principles, 3rd ed.; PWS-KENT Publishing Company: Boston, 1994; pp. 140–146.Suche in Google Scholar
35. Guo, S.; Liu, C. T. Prog. Nat. Sci.: Met. Mater. Int. 2011, 21, 433–446; https://doi.org/10.1016/S1002-0071(12)60080-X.Suche in Google Scholar
36. Guo, S.; Ng, C. P.; Lu, J.; Liu, C. T. J. Appl. Phys. 2011, 109, 103505. 1–5; https://doi.org/10.1063/1.3587228.Suche in Google Scholar
37. Singh, A. K.; Kumar, N.; Dwivedi, A.; Subramaniam, A. Intermetallics 2014, 53, 112–119; https://doi.org/10.1016/j.intermet.2014.04.019.Suche in Google Scholar
38. Kulkarni, R.; Murty, B. S.; Srinivas, V. J. Alloy. Compd. 2018, 746, 194–199; https://doi.org/10.1016/j.jallcom.2018.02.275.Suche in Google Scholar
39. Sahu, P.; Samal, S.; Kumar, V. Materialia 2021, 18, 101133; https://doi.org/10.1016/j.mtla.2021.101133.Suche in Google Scholar
40. Mishra, S. S.; Bajpai, A.; Biswas, K. J. Alloy. Compd. 2021, 871, 159572; https://doi.org/10.1016/j.jallcom.2021.159572.Suche in Google Scholar
41. Chakraborty, A.; Hirian, R.; Kapun, G.; Pop, V. Nanomaterials 2020, 10, 1308; https://doi.org/10.3390/nano10071308.Suche in Google Scholar PubMed PubMed Central
42. Sahu, P.; Samal, S.; Kumar, V. Met. Mater. Int. 2023; https://doi.org/10.1007/s12540-023-01408-8.Suche in Google Scholar
© 2025 Walter de Gruyter GmbH, Berlin/Boston