Startseite Effect of quenching rate on the phase formation and magnetic properties of Co35Fe10Ni30Ti20Al5 high entropy alloy
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Effect of quenching rate on the phase formation and magnetic properties of Co35Fe10Ni30Ti20Al5 high entropy alloy

  • Shashi Kant Mohapatra , Priyanka Kumari und Rohit R. Shahi EMAIL logo
Veröffentlicht/Copyright: 22. Mai 2025
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The annealing temperature, its duration and quenching rate may play a significant role in tuning the functional properties of high entropy alloys (HEAs). In the present work, Co35Fe10Ni30Ti20Al5 HEA is investigated for the effect of different quenching rates on the phase evolution and magnetic properties. The Co35Fe10Ni30Ti20Al5 HEA was synthesized through mechanical alloying and subsequently annealed at 700 °C for 2 h followed by quenching through different rates-furnace cooled, room temperature (RT-) cooled, ice-bath quenched and liquid-N2 quenched separately. The as-synthesized sample exhibited a mixture of fcc, bcc and a slight content of R-phase. The synthesized phase was found to be maintained after quenching at different rates. The magnetic behavior measured for different samples confirmed the characteristic ferromagnetic nature having coercivity in the range of semi-hard magnetic material. We found variation in the volume phase fraction of the secondary bcc phase and the value of coercivity with the variation of the quenching rate. This study may provide an appropriate idea of the quenching rate for tuning the magnetic property of HEAs.


Corresponding author: Rohit R. Shahi, Functional and Energy Materials Research Laboratory, Department of Physics, Central University of South Bihar, Gaya, Bihar, 824236, India, E-mail:

Acknowledgments

The authors would like to acknowledge the characterization facility of CUSB Gaya and UGC-DAE-CSR, Indore. The authors thank Dr. R.J. Choudhary, UGC-DAE-CSR Indore, for his valuable input and discussion in the present investigations. The authors would also like to acknowledge the financial support from UGC-DAE-CSR through collaborative research scheme project no. CRS/2021–2022/01/381 at CUSB Gaya.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: UGC-DAE-CSR, Indore, India CRS/2021–2022/01/381.

  7. Data availability: Data will be made available on request.

References

1. Murty, B. S.; Yeh, J. W.; Ranganathan, S.; Bhattacharjee, P. P. High Entropy Alloys, 2nd ed.; Elsevier: Netherlands, United Kingdom, United States, 2019.Suche in Google Scholar

2. Yeh, J. W.; Cen, S. K.; Lin, S. J.; Gan, J. Y.; Chin, T. S.; Shun, T. T.; Tsau, C. H.; Chang, S. Y. Adv. Eng. Mater. 2004, 6, 299–303; https://doi.org/10.1002/adem.200300567.Suche in Google Scholar

3. Kumari, P.; Gupta, A. K.; Mohapatra, S. K.; Shahi, R. R.; Singh, D. K.; Singh, S.; Singh, P., Eds. Nanomaterials; Springer: Singapore, 2023.Suche in Google Scholar

4. Kumari, P.; Gupta, A. K.; Mishra, R. K.; Ahmad, M. S.; Shahi, R. R. J. Magn. Magn. Mater. 2022, 554, 169142; https://doi.org/10.1016/j.jmmm.2022.169142.Suche in Google Scholar

5. Mohapatra, S. K.; Kumari, P.; Shahi, R. R.; Yasin, G.; Khan, M. A.; Afifi, M. A.; Nguyen, T. A.; Zhang, Y., Eds. High-Entropy Alloys; Elsevier: Netherlands, United Kingdom, United States, 2024.Suche in Google Scholar

6. Kumari, P.; Mishra, R. K.; Gupta, A. K.; Mohapatra, S. K.; Shahi, R. R. J. Alloy and Compd. 2023, 931, 167451; https://doi.org/10.1016/j.jallcom.2022.167451.Suche in Google Scholar

7. Kumari, P.; Kumar, A.; Mishra, R. K.; Shaz, M. A.; Yadav, T. P.; Shahi, R. R. J. Alloy and Compd. 2023, 960, 170697; https://doi.org/10.1016/j.jallcom.2023.170697.Suche in Google Scholar

8. Shahi, R. R.; Mishra, R. K.; Srivatsan, T. S.; Gupta, M., Eds. High Entropy Alloys: Innovations, Advances and Applications; CRC Press: Boca Raton, 2020.10.1201/9780367374426-22Suche in Google Scholar

9. Mishra, R. K.; Kumari, P.; Gupta, A. K.; Shahi, R. R. Proc. Indian Natl. Sci. Acad. 2023, 89, 347–354; https://doi.org/10.1007/s43538-023-00160-2.Suche in Google Scholar

10. Mishra, R. K.; Shahi, R. R.; Singh, A. R.; Sahay, P. P. Emer. Mater 2020, 3 (5), 655–662; https://doi.org/10.1007/s42247-020-00110-4.Suche in Google Scholar

11. Mishra, R. K.; Shahi, R. R. J. Magn. Magn. Mater. 2020, 516, 167342; https://doi.org/10.1016/j.jmmm.2020.167342.Suche in Google Scholar

12. Mishra, R. K.; Kumari, P.; Gupta, A. K.; Shahi, R. R. J. Alloy. Compd. 2021, 889, 161773; https://doi.org/10.1016/j.jallcom.2021.161773.Suche in Google Scholar

13. Mishra, R. K.; Shahi, R. R. J. Magn. Magn. Mater. 2018, 465, 169–175; https://doi.org/10.1016/j.jmmm.2018.04.056.Suche in Google Scholar

14. Mishra, R. K.; Shahi, R. R. J. Magn. Magn. Mater. 2017, 442, 218–223; https://doi.org/10.1016/j.jmmm.2017.06.124.Suche in Google Scholar

15. Mishra, R. K.; Shahi, R. R. J. Alloy. Compd. 2020, 821, 153534; https://doi.org/10.1016/j.jallcom.2019.153534.Suche in Google Scholar

16. Mohapatra, S. K.; Kumari, P.; Shahi, R. R. Appl. Phys. A 2024, 130 (450), 1–16; https://doi.org/10.1007/s00339-024-07621-5.Suche in Google Scholar

17. Zuo, T.; Gao, M. C.; Ouyang, L.; Yang, X.; Cheng, Y.; Feng, R.; Chen, S.; Liaw, P. K.; Hawk, J. A.; Zhang, Y. Acta Mater. 2017, 130, 10–18; https://doi.org/10.1016/j.actamat.2017.03.013.Suche in Google Scholar

18. Zhou, K. X.; Sun, B. R.; Liu, G. Y.; Li, X. W.; Xin, S. W.; Liaw, P. K.; Shen, T. D. Intermetallics 2020, 122, 106801; https://doi.org/10.1016/j.intermet.2020.106801.Suche in Google Scholar

19. Oboz, M.; Zajdel, P.; Zubko, M.; Swiec, P.; Szubka, M.; Kadziolka-Gawel, M.; Maximenko, A.; Trump, B. A.; Yakovenko, A. A. J. Magn. Magn. Mater. 2024, 589, 171506; https://doi.org/10.1016/j.jmmm.2023.171506.Suche in Google Scholar

20. Orbay, Y.; Rao, Z.; Çakır, A.; Tavşanoğlu, T.; Farle, M.; Acet, M. Acta Mater. 2023, 259; https://doi.org/10.1016/j.actamat.2023.119240.Suche in Google Scholar

21. Duan, J.; Wang, M.; Huang, R.; Miao, J.; Lu, Y.; Wang, T.; Li, T. Sci. China Mater. 2023, 66, 772–779; https://doi.org/10.1007/s40843-022-2171-5.Suche in Google Scholar

22. Wang, M.; Lu, Y.; Zhang, G.; Cui, H.; Xu, D.; Wei, N.; Li, T. Vacuum 2021, 184, 109905; https://doi.org/10.1016/j.vacuum.2020.109905.Suche in Google Scholar

23. Babilas, R.; Lonski, W.; Borylo, P.; Kadziolka-Gawel, M.; Gebara, P.; Radon, A. J. Magn Magn Mater 2020, 502, 166492; https://doi.org/10.1016/j.jmmm.2020.166492.Suche in Google Scholar

24. Jiang, S.; Lin, Z.; Xu, H.; Sun, Y. J. Alloys Compd. 2018, 74 (1), 826–833; https://doi.org/10.1016/j.jallcom.2018.01.247.Suche in Google Scholar

25. Xiao, D. H.; Zhou, P. F.; Wu, W. Q.; Diao, H. Y.; Gao, M. C.; Song, M.; Liaw, P. K. Mater. Des. 2017, 116, 438–447; https://doi.org/10.1016/j.matdes.2016.12.036.Suche in Google Scholar

26. Li, Z.; Gu, Y.; Wang, C.; Pan, M.; Zhang, H.; Wu, Z.; Hou, X.; Tan, X.; Xu, H. J. Alloy. Compd. 2019, 779, 293–300; https://doi.org/10.1016/j.jallcom.2018.11.235.Suche in Google Scholar

27. Gong, M.; Qu, H.; Xu, C.; Guo, W.; Wang, K.; Liu, F.; Bai, J.; Gao, Q.; Zhao, X.; Li, S. Trans. Indian Inst. Met. 2022, 75 (8), 1951–1956; https://doi.org/10.1007/s12666-022-02665-8.Suche in Google Scholar

28. Munitz, A.; Salhov, S.; Hayun, S.; Frage, N. J. Alloy. Compd. 2016, 683, 221–230; https://doi.org/10.1016/j.jallcom.2016.05.034.Suche in Google Scholar

29. Kim, D. G.; Jo, Y. H.; Park, J. M.; Choi, W. M.; Kim, H. S.; Lee, B. J.; Sohn, S. S.; Lee, S. J. Alloy. Compd. 2020, 812, 152111; https://doi.org/10.1016/j.jallcom.2019.152111.Suche in Google Scholar

30. Jia, J.; Wu, Y.; Shi, L.; Wang, R.; Guo, W.; Bu, H.; Shao, Y.; Chen, N.; Yao, K. Materials 2024, 17, 1447; https://doi.org/10.3390/ma17061447.Suche in Google Scholar PubMed PubMed Central

31. Murugaiyan, P.; Mitra, A.; Das, S.; Kamaraj, A.; Roy, R. K.; Panda, A. K. J. Supercond. Nov Magn. 2024, 37, 1635–1646; https://doi.org/10.1007/s10948-024-06789-4.Suche in Google Scholar

32. Takeuchi, A.; Inoue, A. Mater. Trans. 2005, 46 (12), 2817–2829; https://doi.org/10.2320/matertrans.46.2817.Suche in Google Scholar

33. Shahi, R. R.; Yadav, T. P.; Shaz, M. A.; Srivastava, O. N. Int. J. Hydrogen Energy 2008, 33, 6188–6194; https://doi.org/10.1016/j.ijhydene.2008.07.029.Suche in Google Scholar

34. Reed-Hill, R. E.; Abbaschian, R. Physical Metallurgy Principles, 3rd ed.; PWS-KENT Publishing Company: Boston, 1994; pp. 140–146.Suche in Google Scholar

35. Guo, S.; Liu, C. T. Prog. Nat. Sci.: Met. Mater. Int. 2011, 21, 433–446; https://doi.org/10.1016/S1002-0071(12)60080-X.Suche in Google Scholar

36. Guo, S.; Ng, C. P.; Lu, J.; Liu, C. T. J. Appl. Phys. 2011, 109, 103505. 1–5; https://doi.org/10.1063/1.3587228.Suche in Google Scholar

37. Singh, A. K.; Kumar, N.; Dwivedi, A.; Subramaniam, A. Intermetallics 2014, 53, 112–119; https://doi.org/10.1016/j.intermet.2014.04.019.Suche in Google Scholar

38. Kulkarni, R.; Murty, B. S.; Srinivas, V. J. Alloy. Compd. 2018, 746, 194–199; https://doi.org/10.1016/j.jallcom.2018.02.275.Suche in Google Scholar

39. Sahu, P.; Samal, S.; Kumar, V. Materialia 2021, 18, 101133; https://doi.org/10.1016/j.mtla.2021.101133.Suche in Google Scholar

40. Mishra, S. S.; Bajpai, A.; Biswas, K. J. Alloy. Compd. 2021, 871, 159572; https://doi.org/10.1016/j.jallcom.2021.159572.Suche in Google Scholar

41. Chakraborty, A.; Hirian, R.; Kapun, G.; Pop, V. Nanomaterials 2020, 10, 1308; https://doi.org/10.3390/nano10071308.Suche in Google Scholar PubMed PubMed Central

42. Sahu, P.; Samal, S.; Kumar, V. Met. Mater. Int. 2023; https://doi.org/10.1007/s12540-023-01408-8.Suche in Google Scholar

Received: 2024-01-08
Accepted: 2024-11-21
Published Online: 2025-05-22

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 24.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2024-0015/html
Button zum nach oben scrollen