Numerical investigations on hydrothermal flame characteristics of water-cooled hydrothermal burner
Abstract
Supercritical hydrothermal combustion, as a quick homogeneous oxidizing process, offers a promising treatment option for industrial wastewater. This paper established a computational fluid dynamics model of a water-cooled hydrothermal combustion burner to investigate the thermal flame characteristics. The effects of the fuel mass flow rate, fuel concentration, initial reactor temperature, reaction pressure, and oxidant temperature on the thermal combustion ignition were revealed. The results indicate that the fuel concentration (from 10 wt% to 60 wt%) and initial reactor temperature (from 623 to 773 K) had less effect on the ignition temperature. In contrast, the ignition temperature increases by 398 K with increasing fuel mass flow rate (from 24 kg h−1 to 1080 kg h−1). As the oxygen temperature increases (from 273 to 673 K), the ignition temperature gradually decreases to 573 K and then increases. An increase in reaction pressure can facilitate a decrease in ignition temperature to a certain extent, and the optimal reaction pressure is 25 MPa. This study provides a vital reference for a hydrothermal burner’s scale-up design and ignition operation.
Funding source: National Natural Science Foundation of China
Award Identifier / Grant number: Unassigned
Funding source: China Postdoctoral Science Foundation
Award Identifier / Grant number: Unassigned
Acknowledgments
This work was supported by the National Natural Science Foundation of China [51871179 and 22008190], and the China Postdoctoral Science Foundation [2022M722526].
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
Augustine, C., and J. W. Tester. 2009. “Hydrothermal Flames: From Phenomenological Experimental Demonstrations to Quantitative Understanding.” The Journal of Supercritical Fluids 47: 415–30. https://doi.org/10.1016/j.supflu.2008.10.003.Suche in Google Scholar
Baulch, D. L., C. J. Cobos, R. A. Cox, P. Frank, G. Hayman, T. Just, J. A. Kerr, T. Murrells, M. J. Pilling, J. Troe, R. W. Walker, and J. Warnatz. 1994. “Evaluated Kinetic Data for Combustion Modeling Supplement-I.” Journal of Physical and Chemical Reference Data 23: 847–1033. https://doi.org/10.1063/1.555953.Suche in Google Scholar
Bermejo, M. D., E. Fdez-Polanco, and M. J. Cocero. 2006. “Experimental Study of the Operational Parameters of a Transpiring Wall Reactor for Supercritical Water Oxidation.” The Journal of Supercritical Fluids 39: 70–9. https://doi.org/10.1016/j.supflu.2006.02.006.Suche in Google Scholar
Bermejo, M. D., C. Jimenez, P. Cabeza, A. Matias-Gago, and M. J. Cocero. 2011. “Experimental Study of Hydrothermal Flames Formation Using a Tubular Injector in a Refrigerated Reaction Chamber. Influence of the Operational and Geometrical Parameters.” The Journal of Supercritical Fluids 59: 140–8. https://doi.org/10.1016/j.supflu.2011.08.009.Suche in Google Scholar
Bermejo, M. D., P. Cabeza, J. P. S. Queiroz, C. Jimenez, and M. J. Cocero. 2011. “Analysis of the Scale up of a Transpiring Wall Reactor with a Hydrothermal Flame as a Heat Source for the Supercritical Water Oxidation.” The Journal of Supercritical Fluids 56: 21–32. https://doi.org/10.1016/j.supflu.2010.11.014.Suche in Google Scholar
Cabeza, P., J. P. Silva Queiroz, M. Criado, C. Jimenez, M. Dolores Bermejo, F. Mato, and M. Jose Cocero. 2015. “Supercritical Water Oxidation for Energy Production by Hydrothermal Flame as Internal Heat Source. Experimental Results and Energetic Study.” Energy 90: 1584–94. https://doi.org/10.1016/j.energy.2015.06.118.Suche in Google Scholar
Cocero, M. J., E. Alonso, M. T. Sanz, and F. Fdz-Polanco. 2002. “Supercritical Water Oxidation Process under Energetically Self-Sufficient Operation.” The Journal of Supercritical Fluids 24: 37–46. https://doi.org/10.1016/s0896-8446(02)00011-6.Suche in Google Scholar
Cui, C. C., Y. H. Li, S. Z. Wang, M. M. Ren, C. Yang, Z. H. Jiang, and J. Zhang. 2020. “Review on an Advanced Combustion Technology: Supercritical Hydrothermal Combustion.” Applied Sciences 10: 1645.10.3390/app10051645Suche in Google Scholar
Cui, C. C. 2021. Study on the Flame Characteristics and Structure Optimization of Supercritical Hydrothermal Combustion Assisted Multithermal Fluid Generator. Xi’an: Xi’an Jiaotong University.Suche in Google Scholar
McAdams, W. H. 1942. Heat Transmission, New York, USA.Suche in Google Scholar
Hirth, T., and E. U. Franck. 1993. “Oxidation and Hydrothermolysis of Hydrocarbons in Supercritical Water at High Pressures.” Berichte Der Bunsen-Gesellschaft-Physical Chemistry Chemical Physics 97: 1091–8. https://doi.org/10.1002/bbpc.19930970905.Suche in Google Scholar
Japas, M. L., and E. U. Franck. 1985. “High-pressure Phase-Equilibria and Pvt-Data of the Water-Oxygen System Including Water–Air to 673 K and 250 MPa.” Berichte Der Bunsen-Gesellschaft-Physical Chemistry Chemical Physics 89: 1268–75. https://doi.org/10.1002/bbpc.19850891206.Suche in Google Scholar
Li, L., Y. Shi, Y. Huang, A. Xing, and H. Xue. 2022. “The Effect of Governance on Industrial Wastewater Pollution in China.” International Journal of Environmental Research and Public Health 19. https://doi.org/10.3390/ijerph19159316.Suche in Google Scholar PubMed PubMed Central
Li, Y., S. Wang, M. Ren, J. Zhang, D. Xu, L. Qian, and P. Sun. 2016. Recent Advances on Research and Application on Supercritical Hydrothermal Combustion Technology, Vol. 35, 1942–55. Beijing: Chemical Industry and Engineering Progress.Suche in Google Scholar
Long, Z. S. Z. J. W. J. P. 2020. “Design of A2/O Process for Printing and Dyeing Organic Wastewater Treatment.” China Biogas 6.Suche in Google Scholar
Martin, A., M. D. Bermejo, and M. J. Cocero. 2011. “Recent Developments of Supercritical Water Oxidation: A Patents Review.” Recent Patents on Chemical Engineering 4: 219–30. https://doi.org/10.2174/2211334711104030219.Suche in Google Scholar
Meier, T., P. Stathopoulos, and P. R. von Rohr. 2016. “Hot Surface Ignition of Oxygen-Ethanol Hydrothermal Flames.” The Journal of Supercritical Fluids 107: 462–8. https://doi.org/10.1016/j.supflu.2014.11.012.Suche in Google Scholar
Meier, T., M. J. Schuler, P. Stathopoulos, B. Kramer, and P. R. von Rohr. 2017. “Hot Surface Ignition and Monitoring of an Internal Oxygen-Ethanol Hydrothermal Flame at 260 Bar.” The Journal of Supercritical Fluids 130: 230–8. https://doi.org/10.1016/j.supflu.2016.09.015.Suche in Google Scholar
Narayanan, C., C. Frouzakis, K. Boulouchos, K. Prikopsky, B. Wellig, and P. R. von Rohr. 2008. “Numerical Modelling of a Supercritical Water Oxidation Reactor Containing a Hydrothermal Flame.” The Journal of Supercritical Fluids 46: 149–55. https://doi.org/10.1016/j.supflu.2008.04.005.Suche in Google Scholar
Phenix, B. D., J. L. DiNaro, J. W. Tester, J. B. Howard, and K. A. Smith. 2002. “The Effects of Mixing and Oxidant Choice on Laboratory-Scale Measurements of Supercritical Water Oxidation Kinetics.” Industrial & Engineering Chemistry Research 41: 624–+. https://doi.org/10.1021/ie010473u.Suche in Google Scholar
Príkopský, K. 2007. Characterization of Continuous Diffusion Flames in Supercritical Water. Zurich: ETH Zurich.Suche in Google Scholar
Prikopsky, K., B. Wellig, and P. R. von Rohr. 2007. “SCWO of Salt Containing Artificial Wastewater Using a Transpiring-Wall Reactor: Experimental Results.” The Journal of Supercritical Fluids 40: 246–57. https://doi.org/10.1016/j.supflu.2006.05.007.Suche in Google Scholar
Queiroz, J. P. S., M. D. Bermejo, and M. J. Cocero. 2014. “Numerical Study of the Influence of Geometrical and Operational Parameters in the Behavior of a Hydrothermal Flame in Vessel Reactors.” Chemical Engineering Science 112: 47–55. https://doi.org/10.1016/j.ces.2014.03.019.Suche in Google Scholar
Reddy, S. N., S. Nanda, U. G. Hegde, M. C. Hicks, and J. A. Kozinski. 2017. “Ignition of N-Propanol-Air Hydrothermal Flames during Supercritical Water Oxidation.” Proceedings of the Combustion Institute 36: 2503–11. https://doi.org/10.1016/j.proci.2016.05.042.Suche in Google Scholar
Reddy, S. N., S. Nanda, J. A. Okolie, A. K. Dalai, M. C. Hicks, U. G. Hegde, and J. A. Kozinski. 2022. “Hydrothermal Flames for Subaquatic, Terrestrial and Extraterrestrial Applications.” Journal of Hazardous Materials 424. https://doi.org/10.1016/j.jhazmat.2021.127520.Suche in Google Scholar PubMed
Ren, M., S. Wang, J. Zhang, Y. Guo, D. Xu, and Y. Wang. 2017. “Characteristics of Methanol Hydrothermal Combustion: Detailed Chemical Kinetics Coupled with Simple Flow Modeling Study.” Industrial & Engineering Chemistry Research 56: 5469–78. https://doi.org/10.1021/acs.iecr.7b00886.Suche in Google Scholar
Ren, M., S. Wang, C. Yang, H. Xu, Y. Guo, and D. Roekaerts. 2019. “Supercritical Water Oxidation of Quinoline with Moderate Preheat Temperature and Initial Concentration.” Fuel 236: 1408–14. https://doi.org/10.1016/j.fuel.2018.09.091.Suche in Google Scholar
Ren, M., S. Wang, N. Romero-Anton, J. Zhao, C. Zou, and D. Roekaerts. 2021. “Numerical Study of a Turbulent Co-axial Non-premixed Flame for Methanol Hydrothermal Combustion: Comparison of the EDC and FGM Models.” The Journal of Supercritical Fluids 169: 105132, https://doi.org/10.1016/j.supflu.2020.105132.Suche in Google Scholar
Ren, M. M. 2019. Study on Supercritical Hydrothermal Combustion: Chemical Reaction Mechanism and the Flame Characteristics Under Different Flow Pattern. Xi’an: Xi’an Jiaotong University.Suche in Google Scholar
Schilling, W., and E. U. Franck. 1988. “Combustion and Diffusion Flames at High-Pressure to 2000 Bar.” Berichte Der Bunsen-Gesellschaft-Physical Chemistry Chemical Physics 92: 631–6. https://doi.org/10.1002/bbpc.198800149.Suche in Google Scholar
Sierra-Pallares, J., M. Teresa Parra-Santos, J. Garcia-Serna, F. Castro, and M. Jose Cocero. 2009. “Numerical Modelling of Hydrothermal Flames. Micromixing Effects over Turbulent Reaction Rates.” The Journal of Supercritical Fluids 50: 146–54. https://doi.org/10.1016/j.supflu.2009.05.001.Suche in Google Scholar
Sobhy, A., I. S. Butler, and J. A. Kozinski. 2007. “Selected Profiles of High-Pressure Methanol–Air Flames in Supercritical Water.” Proceedings of the Combustion Institute 31: 3369–76. https://doi.org/10.1016/j.proci.2006.07.253.Suche in Google Scholar
Steeper, R. R., S. F. Rice, M. S. Brown, and S. C. Johnston. 1992. “Methane and Methanol Diffusion Flames in Supercritical Water.” The Journal of Supercritical Fluids 5: 262–8. https://doi.org/10.1016/0896-8446(92)90017-e.Suche in Google Scholar
Steinle, J. U., and E. U. Franck. 1995. “High Pressure Combustion – Ignition Temperatures to 1000 Bar.” Berichte der Bunsengesellschaft fur physikalische Chemie 99: 66–73. https://doi.org/10.1002/bbpc.19950990110.Suche in Google Scholar
Wang, X., H. Zhang, S. Yang, and Z. Ge. 2017. “Industrial Wastewater Treatment Techniques and Prospects.” Applied Chemical Industry 46: 563–8.Suche in Google Scholar
Wellig, B., M. Weber, K. Lieball, K. Prikopsky, and P. R. von Rohr. 2009. “Hydrothermal Methanol Diffusion Flame as Internal Heat Source in a SCWO Reactor.” The Journal of Supercritical Fluids 49: 59–70. https://doi.org/10.1016/j.supflu.2008.11.021.Suche in Google Scholar
Xu, D., P. Feng, Y. Wang, W. Yang, Y. Wang, and S. Sun. 2021. “Effects of Structural Parameters on Water Film Properties of Transpiring Wall Reactor.” AIChE Journal 68: 2, https://doi.org/10.1002/aic.17472.Suche in Google Scholar
Xu, J. 2016. “Research and Application of Improving Multiple Thermal Fluid Recovery Effect by Profile Control with Foam.” Oil Driling and Production Technology 37: 114–6.Suche in Google Scholar
Yang, J., S. Wang, Y. Li, X. Tang, Y. Wang, D. Xu, and Y. Guo. 2019. “Effect of Salt Deposit on Corrosion Behavior of Ni-Based Alloys and Stainless Steels in Supercritical Water.” The Journal of Supercritical Fluids 152: 104570, https://doi.org/10.1016/j.supflu.2019.104570.Suche in Google Scholar
Zhang, F., S. Chen, Z. Wang, C. Ma, G. Chen, and J. Zhang. 2010. “IEEE, Numerical Simulation of Supercritical Water Oxidation with a Transpiring Wall Reactor.” In: 2010 4th International Conference on Bioinformatics and Biomedical Engineering (ICBBE 2010), 2010.10.1109/ICBBE.2010.5515571Suche in Google Scholar
Zhang, F., Y. Zhang, C. Xu, S. Chen, G. Chen, and C. Ma. 2015. “Experimental Study on the Ignition and Extinction Characteristics of the Hydrothermal Flame.” Chemical Engineering & Technology 38: 2054–66. https://doi.org/10.1002/ceat.201300571.Suche in Google Scholar
Zhang, J., S. Wang, M. Ren, J. Lu, S. Chen, and H. Zhang. 2019. “Effect Mechanism of Auxiliary Fuel in Supercritical Water: A Review.” Industrial & Engineering Chemistry Research 58: 1480–94. https://doi.org/10.1021/acs.iecr.8b05696.Suche in Google Scholar
Zhang, J., L. Zhang, C. Men, M. Ren, H. Zhang, and J. Lu. 2022. “Ignition of Supercritical Hydrothermal Flames in Co-flow Jets.” The Journal of Supercritical Fluids 188: 105683, https://doi.org/10.1016/j.supflu.2022.105683.Suche in Google Scholar
Zhu, K., and G. Hu. 2014. “Supercritical Hydrothermal Synthesis of Titanium Dioxide Nanostructures with Controlled Phase and Morphology.” The Journal of Supercritical Fluids 94: 165–73. https://doi.org/10.1016/j.supflu.2014.07.011.Suche in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Articles
- Methylene blue removal from aqueous solution using modified Met-SWCNT-Ag nanoparticles: optimization using RSM-CCD
- Leaching behavior of germanium presented in different phases from zinc oxide dust under atmospheric acid leaching conditions
- TiO2 P25 and Kronos vlp 7000 materials activated by simulated solar light for atrazine degradation
- Numerical investigations on hydrothermal flame characteristics of water-cooled hydrothermal burner
- Moving bed biofilm reactor combined with an activated carbon filter for biological nitrate removal
- Preparation of bimodal mesoporous CoCe composite oxide for ethanol complete oxidation in air
- Hydrocracking of hydrotreated light cycle oil for optimizing BTEX production: a simple kinetic model
- Hydrodynamic comparison of different geometries of square cross-section airlift bioreactor using computational fluid dynamics
- Influence of different influence parameters on mixing characteristics of silicon particles in cassette
Artikel in diesem Heft
- Frontmatter
- Articles
- Methylene blue removal from aqueous solution using modified Met-SWCNT-Ag nanoparticles: optimization using RSM-CCD
- Leaching behavior of germanium presented in different phases from zinc oxide dust under atmospheric acid leaching conditions
- TiO2 P25 and Kronos vlp 7000 materials activated by simulated solar light for atrazine degradation
- Numerical investigations on hydrothermal flame characteristics of water-cooled hydrothermal burner
- Moving bed biofilm reactor combined with an activated carbon filter for biological nitrate removal
- Preparation of bimodal mesoporous CoCe composite oxide for ethanol complete oxidation in air
- Hydrocracking of hydrotreated light cycle oil for optimizing BTEX production: a simple kinetic model
- Hydrodynamic comparison of different geometries of square cross-section airlift bioreactor using computational fluid dynamics
- Influence of different influence parameters on mixing characteristics of silicon particles in cassette