Depolymerization of lignin by extracellular activity of Pycnoporus cinnabarinus, to obtain cellulose
-
Raymundo Guzmán Gil
, Oscar Manuel González Brambila , Hugo Velasco Bedrán , Julio César García Martínez , José Antonio Colín Luna und Margarita Mercedes González Brambila
Abstract
Cellulose can be used to produce biofuels and many other products like pharmaceutical goods, food supplements, cosmetics, bio-plastics, etc. Lignocellulosic materials, like O. ficus indica residuals, are a heterogeneous biopolymer formed mainly by lignin, hemicellulose and cellulose. Lignin provides protection to the plants against chemical and microbial degradation, but it can be degraded by white rot fungi species, like Pycnoporus cinnabarinus. Since cellulose molecules are arranged in regular bundles enveloped by hemicellulose and lignin molecules, it is necessary to brake lignin and hemicellulose molecules to recover cellulose for its use in bioprocess. In this work, a biotechnological process for cellulose recovery from cactus waste through depolymerization of lignin by P. cinnabarinus, is presented. The delignification is carried out by aerobic culture in batch stirred bioreactors, with a liquid culture medium enriched with nutrients and minerals with O. ficus indica residuals as the unique carbon source, during eight-day span under continuous feeding of oxygen. A factorial design of experiments (DOE) for eight sets of factor values was selected for this study. The factors were: particle size, pH level, and process temperature. For each experiment, biomass, total reducing carbohydrates (TRC) and dissolved oxygen (DO) concentrations were measured every 24 h. At the end of each experiment, the percentage of delignification, and cellulose recovery was measured by Infrared (IR) spectroscopy. Up to 67% of delignification and 22% of cellulose recovery were obtained by the process. These results were analyzed by a factorial DOE in order to maximize each response individually and to optimize both responses together. The delignification of Opuntia ficus indica thorns has not been previously reported to our knowledge.
Acknowledgements
We want to thank the Consejo Nacional de Ciencia y Tecnología, the Universidad Autónoma Metropolitana – Unidad Azcapotzalco, and the Process Engineering graduate program for its support in the development and conclusion of this research.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
Adeoye, A., A. Lateef, and E. Gueguim-Kana. 2015. “Optimization of Citric Acid Production Using a Mutant Strain of Aspergillus niger on Cassava Peel Substrate.” Biocatalysts and Agriculture Biotechnology 4: 568–74, https://doi.org/10.1016/j.bcab.2015.08.004.Suche in Google Scholar
Alejandro, A. Z. A. 2000. El cultivo del nopal verdura en Milpa Alta, D.F., 1–16. México: INIFAP.Suche in Google Scholar
Amelung, W., K. W. Flach, and W. Zech. 1999. “Lignin in Particle-Size Fractions of Native Grasslands Soils as Influenced by Climate.” Soil Science Society of America Journal 63: 1222–8, https://doi.org/10.2136/sssaj1999.6351222x.Suche in Google Scholar
Arregui, L., M. Ayala, X. Gómez-Gil, G. Gutiérrez-Soto, C. E. Hernández-Luna, M. Herrera de los Santos, L. Levin, A. Rojo-Domínguez, D. Romero-Martínez, M. Saparrat, M. Trujillo-Roldán, and A. Valdez-Cruz. 2019. “Laccases: Strucutre, Function, and Potential Application in Water Bioremediation.” Microbial Cell Factories 18: 200, https://doi.org/10.1186/s12934-019-1248-0.Suche in Google Scholar PubMed PubMed Central
Aufischer, G., R. Süss, B. Kamm, and C. Paulik. 2022. “Depolymerisation of Kraft Lignin to Obtain High Value-Added Products: Antioxidants and UV Absorbers.” Holzforschung 76 (9): 845–52, https://doi.org/10.1515/hf-2022-0023.Suche in Google Scholar
Averill, C., B. L. Turner, and A. C. Finzi. 2014. “Mycorrhiza-mediated Competition between Plants and Decomposers Drives Soil Carton Storage.” Nature 505: 543–5, https://doi.org/10.1038/nature12901.Suche in Google Scholar PubMed
Barrington, S., J. S. Kim, L. Wang, and J. W. Kim. 2009. “Optimization of Citric Acid Production by Aspergillus niger NRRL 567 Grown in a Column Bioreactor.” Korean Journal of Chemical Engineering 26: 422–7, https://doi.org/10.1007/s11814-009-0071-4.Suche in Google Scholar
Bradford, M. 1976. “A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding.” Analytical Biochemical 72: 248–54, https://doi.org/10.1016/0003-2697(76)90527-3.Suche in Google Scholar
Briens, C., J. Piskorz, and F. Berruti. 2008. “Biomass Valorization for Fuel and Chemicals Production – A Review.” International Journal of Chemical Reactor Engineering 6 (1). https://doi.org/10.2202/1542-6580.1674.Suche in Google Scholar
Burllacu, A., F. Israel-Roming, and C. P. Cornea. 2018. “Depolymerization of Kraft Lignin with Laccase and Peroxidase: A Review. Scietific Bulletin.” Series F. Biotechnologies XXII: 172–9.Suche in Google Scholar
Chen, H. 2014. “Biotechnology of Lignocellulose.” In Theory and Practice. China: Chemical Industry Press, Springer.Suche in Google Scholar
Chávez-Sifontes, M., and M. E. Domine. 2013. Lignin, Structure and Applications: Despolymerization for Obtaining Aromatic Derivatives of Industrial Interest. Valencia: Universidad de Valencia.Suche in Google Scholar
Clark, J., and F Deswarte. 2015. Introduction of Chemicals from Biomass. India: John Wiley & Sons.10.1002/9781118714478Suche in Google Scholar
Davis, K., M. Rover, R.C. Brown, X. Bai, Z. Wen, and L. R. Jarboe. 2016. “Recovery and Utilization of Lignin Monomers as Part of the Biorefinery Approach.” Energies MDPI 9: 808, https://doi.org/10.3390/en9100808.Suche in Google Scholar
de Assis, A. C. L., L. P. Alves, J. P. T. Malheiro, A. R. A. Barros, E. E. Pinheiro-Santos, E. P. de Azevedo, H. D. Silva Alves, J. A. Oshiro-Junior, and B. P. G. D. L. Damasceno. 2019. “Opuntia Ficus-Indica L. Miller (Palma Forrageira) as an Alternative Source of Cellulose for Production of Pharmaceutical Dosage Forms and Biomaterials: Extraction and Characterization.” Plymers MDPI 11: 1124, https://doi.org/10.3390/polym11071124.Suche in Google Scholar PubMed PubMed Central
Del Cerro, C., E. Erickson, T. Dong, A. R. Wong, E. K. Eder, S. O. Purvine, H. D. Mitchell, K. K. Weitz, L. M. Markillie, M. C. Burnet, D. W. Hoyt, R. K. Chu, J.-F. Cheng, K. J. Ramirez, R. Katahira, W. Xiong, M. E. Himmel, V. Subramanian, J. G. Linger, and S. Davini. 2021. “Intracellular Pathways for Lignin Catabolism in White-Rot Fungi.” European PMC 118 (9), https://doi.org/10.1073/pnas.2017381118.Suche in Google Scholar PubMed PubMed Central
Eggert, C., U. K. Temp, and E. Eriksson. 1996. “The Lignolytic System of the White Rot Fungus Pycnoporus Cinnabarinus: Purification and Characterization of the Laccase.” Applied and Environmental Microbiology 62: 1151–8, https://doi.org/10.1128/aem.62.4.1151-1158.1996.Suche in Google Scholar PubMed PubMed Central
Eggert, C., U. Temp, and K.-E. L. Eriksson. 1997. “Laccase Is Essential for Lignin Degradation by the White-Rot Fungus Pycnoporus Cinnabarinus. Institute. Of Genetic. Microbiology and Microbe Genetics.” FEBS Letters 407: 89–92, https://doi.org/10.1016/s0014-5793(97)00301-3.Suche in Google Scholar PubMed
Gil, R. G., H. S. Correa, J. L. C. Larios, and M. M. González-Brambila. 2020. “A Biotechnological Process for Obtaining Citric Acid through Paper Cellulose Aerobic Bioreaction.” International Journal of Chemical Reactor Engineering 18 (8): 20200027. https://doi.org/10.1515/ijcre-2020-0027.Suche in Google Scholar
Guzmán, G. R. 2014. “Obtención de ácido cítrico a partir de papel como Residuos Sólidos Urbanos por fermentación con Aspergillus niger.” In Tesis de maestría en ciencias e ingeniería ambientales, 15–6. Ciudad de México: Universidad Autónoma Metropolitana, Azcapotzalco.Suche in Google Scholar
Herrera, C., G. Vázquez, R. Agüero, F. Montes, and M. Jacobo. 2004. “Mexican Cultivars of O. ficus Indica Mill with Economic Importance.” In Proceedings of the V International Congress on Cactus Pear and Cochineal. México.Suche in Google Scholar
INEGI. 2007. Características principales del cultivo de nopal en el Distrito Federal caso Milpa Alta. Censo Agropecuario, 1–78. México.Suche in Google Scholar
Jiang, T. D. 2019. Lignin Chemistry and Applications. Amsterdam: Chemical Industry Press – Elsevier.Suche in Google Scholar
Kadam, K., L., and S. W. Drew. 1986. “Study of Lignin Biotransformation by Aspergillus fumigatus and White-Rot Fungi Using 14 C-Labeled and Unlabeled Kraft Lignins.” Biotechnology and Bioengineering 28: 394–404, https://doi.org/10.1002/bit.260280313.Suche in Google Scholar PubMed
Kadimaliev, D. A., V. V. Revin, N. A. Atykyan, and V. D. Samuilov. 2003. “Effect of Wood Modification on Lignin Consumption and Synthesis of Lignolytic Enzymes by the Fungus Panus (Lentinus) Tigrinus.” Applied Biochemistry and Microbiology 39: 488–92, https://doi.org/10.1023/a:1025448703138.10.1023/A:1025448703138Suche in Google Scholar
Kumar, R., F. Hu, P. Sannigrahi, S. Jung, A. J. Ragauskas, and C. E. Wyman. 2012. “Carbohydrate Derived-Pseudo-Lignin Can Retard Cellulose Biological Conversion.” Biotechnology and Bioengineering 100 (3): 737–53, https://doi.org/10.1002/bit.24744.Suche in Google Scholar PubMed
Lam, P. Y., Y. Tobimatsu, Y. Takeda, S. Suzuki, M. Yamamura, T. Unezawa, and C. Lo. 2017. “Disrupting Flavone Synthase II Alters Lignin and Improves Biomass Digestibility.” Plant Physiology 174: 972–85, https://doi.org/10.1104/pp.16.01973.Suche in Google Scholar PubMed PubMed Central
Lefsih, K., C. Delattre, G. Pierre, P. Michaud, T. M. Aminabhavi, F. Dahmoune, and K. Madani. 2016. “Extraction, Characterization and Gelling Behavior Enhancement of Pectins from the Cladodes of Opuntia ficus indica.” International Journal of Biology Macromolecules 82: 645–52, https://doi.org/10.1016/j.ijbiomac.2015.10.046.Suche in Google Scholar PubMed
Li, A., and Khraisheh. 2010. “Bioenergy II: Bio-Ethanol from Municipal Solid Waste the Role of Biomass Properties and Structures during the Ethanol Conversion Process.” International Journal of Chemical Reactor Engineering 8: A85, https://doi.org/10.2202/1542-6580.1918.Suche in Google Scholar
Li, M., and M. Wilkins 2021. “Lignin Bioconversion into Valuable Products: Fractionation, Depolymerization, Aromatic Compound Conversion, and Bioproduct Formation.” Systems Microbiology and Biomanufacturing 1: 166–85, https://doi.org/10.1007/s43393-020-00016-6.Suche in Google Scholar
Li, X., and Y. Zheng. 2020. “Biotransformation of Lignin: Mechanisms, Applications and Future Work.” Biotechnology Progress 36: e2922, https://doi.org/10.1002/btpr.2922.Suche in Google Scholar PubMed
Lomascolo, A., E. Uzan-Boukhris, I. Herpoël-Gimbert, J.-C. Sigoillot, and L. Lesage-Meessen. 2011. “Peculiarities of Pycnoporus Species for Applications in Biotechnology.” Applied Microbiology and Biotechnology 92: 1129–49, https://doi.org/10.1007/s00253-011-3596-5.Suche in Google Scholar PubMed
Lindström, T., and G. Ström. 2022. “Bulking of Cellulose Fibres – a Review.” Nordic Pulp and Paper Research Journal 37 (1): 192–204, https://doi.org/10.1515/npprj-2021-0062.Suche in Google Scholar
Malainine, M., A. Dufresne, D. Dupeyre, M. Mahrouz, R. Vuong, and M. Vignon. 2003. “Structure and Morphology of Cladodes and Spines of Opuntia Ficus-Indica. Cellulose Extraction and Characterization.” Carbohydrate Polymers 51: 77–83, https://doi.org/10.1016/s0144-8617(02)00157-1.Suche in Google Scholar
Mannai, F., M. Ammar, J. G. Yanez, E. Elaloui, and Y. Moussaoui. 2016. “Cellulose Fiber from Tunisian Barbary Fig Opuntia ficus Indica for Papermaking.” Cellulose 23: 2061–72, https://doi.org/10.1007/s10570-016-0899-9.Suche in Google Scholar
Marin-Bustamante, M. Q., J. J. Chanona-Pérez, N. Gυemes-Verab, I. Arzate-Vázquez, M. J. Perea-Flores, J. A. Mendoza-Pérez, G. Calderón-Domínguez, and R. G. Casarez-Santiago. 2018. “Evaluation of Physical, Chemical, Microstructural and Micromechanical Properties of Nopal Spines (Opuntia Ficus-indica).” Industrial Crops and Products 123: 707–18, https://doi.org/10.1016/j.indcrop.2018.07.030.Suche in Google Scholar
Mattila, H. K., M. Mäkinen, and T. Lundell. 2020. “Hypoxia Is Regulating Enzymatic Wood Decomposition and Intracellular Carbohydrate Metabolism in Filamentous White Rot Fungus.” Biotechnology for Biofuels Z3:13: 1–17 (Art No. 26), https://doi.org/10.1186/s13068-020-01677-0.Suche in Google Scholar PubMed PubMed Central
Mazlan, S. Z., and I. A. Hanifah. 2017. “Effects of Temperature and pH on Immobilized Laccase Activity in Conjugated Methacrylate-Acrylate Microspheres.” International Journal of Polymer Science. 2017: 1–8, https://doi.org/10.1155/2017/5657271.Suche in Google Scholar
Meehnian, H., A. Jana, and M. M. Jana. 2017. “Variation in Particle Size, Moisture Content and Supplmements for Improvement of Cotton Stalks’ Lignin Degradation by Phlebia Radiata and Saccharification.” Indian Chemical Engineer 60 (2), 196–209, https://doi.org/10.1080/00194506.2017.1350826.Suche in Google Scholar
Mostafa, Y., and S. Alamri. 2012. “Optimization of Date Syrup for Enhancement of the Production of Citric Acid Using Immobilized Cells of Aspergillus niger.” Saudi Journal of Biological Sciences 19: 241–6, https://doi.org/10.1016/j.sjbs.2012.01.004.Suche in Google Scholar PubMed PubMed Central
Österberg, M., M. Sipphonen, B. Mattos, and O. Rojas. 2020. “Spherical Lignin Particles: A Review on Their Sustainability and Applications. Green Chemistry.” Royal Society of Chemistry 22: 2712, https://doi.org/10.1039/d0gc00096e.Suche in Google Scholar
Pathak, V. M., and Navneet. 2017. “Review on the Status of Polymer Degradation: A Microbial Approach.” Bioresources and Bioprocess 4: 15, https://doi.org/10.1186/s40643-017-0145-9.Suche in Google Scholar
Pereira, J. de C., E. C. Giese, M. M. de Souza Moretti, A. C. dos Santos Gomes, O. M. Perrone, M. Boscolo, R. da Silva, E. Gomes, and D. A. B. Martins. 2017. “Effect of Metal Ions, Chemical Agents and Organic Compounds on Lignocellulolytic Enzymes Activities.” In Enzyme Inhibitors and Activators. London: IntechOpen.10.5772/65934Suche in Google Scholar
Pineda-Insuasti, J. A., W. E. Gómez-Andrade, A. S. Duarte-Trujillo, C. P. Soto-Arroyave, C. A. Pineda-Soto, F. J. Fierro-Ramos, E. S. Mora-Muñoz, and S. E. Álvarez-Ramos. 2017. “Producción de Pycnoporus spp. y sus metabolitos secundarios.” ICIDCA. Sobre los Derivados de la Caña de Azúcar 51 (2): 60–9.Suche in Google Scholar
Prinsen, P. 2010. Composición química de diversos materiales lignocelulósicos de interés industrial y análisis estructural de sus ligninas. Sevilla, Spain: Universidad de Sevilla. Tesis de maestría.Suche in Google Scholar
Ralph, J., C. Lapierre, and W. Boerjan. 2018. “Lignin Structure and its Engineering.” Current Opinion in Biotechnology: 11–29.Suche in Google Scholar
Ramezani Kakroodi, A., S. Panthapulakkal, M. Sain, and A. Asiri. 2015. “Cellulose Nanofibers from the Skin of Beavertail Cactus, Opuntia Bailaris, as Reinforcements for Polyvinyl Alcohol.” Journal of Applied Polymer Science 42499: 1–7, https://doi.org/10.1002/app.42499.Suche in Google Scholar
Rodríguez, C. S., and H. J. Toca. 2006. “Industrial and Biotechnological Applications of Laccases: A Review.” Biotechnological Advances 24: 500–13, https://doi.org/10.1016/j.biotechadv.2006.04.003.Suche in Google Scholar PubMed
Salmela, M., T. Lehtinen, E. Efimova, S. Santala, and V. Santala. 2019. “Alkane and Wax Ester Production from Lignin-Related Aromatic Compounds.” Biotechnology and Bioengineering 116: 1934–45, https://doi.org/10.1002/bit.27005.Suche in Google Scholar PubMed
Schmidt, M., M. Torn, S. Abiven, T. Dittmar, G. Guggenberger, I. Janssens, M. Kleber, I. Kögel-Knabner, J. Lehmann, D. Manning, P. Nannipieri, D. Rasse, S. Weiner, and S. Trumbore. 2011. “Persitence of Soil Organic Matter as an Ecosystem Property.” Nature 478: 49–56, https://doi.org/10.1038/nature10386.Suche in Google Scholar PubMed
SEMARNAT. 2013. Ley General para la Prevención y Gestión Integral de los Residuos. Diario Oficial de la Federación.Suche in Google Scholar
Sharma, V., and A. K. Jaitly. 2017. “Optimization of Growth of Two Wild Species of Pycnoporus Collected from Foothill of Uttarakhan.” International Journal of Agriculture Innovations and Research 6 (1): 91–4.Suche in Google Scholar
Shi, K., Y. Liu, P. Chen, and Y. Li. 2021. “Contribution of Lignin Peroxidase, Manganese Peroxidase and Laccase in Lignite Degradation by Mixed White-Rot Fungi.” Waste and Biomass Valorization 12: 3753–63, https://doi.org/10.1007/s12649-020-01275-z.Suche in Google Scholar
Sigoillot, C., A. Lomascolo, E. Record, J. Robert, M. Asther, and J. Sigoillot. 2002. “Lignocellulolytic and Hemicellulolytic System of Pycnoporus Cinnabarinus: Isolation and Characterization of a Cellobiose Dehydrogenase and a New Xylanase.” Enzyme and Microbial Technology 31: 876–83, https://doi.org/10.1016/S0141-0229(02)00208-9.Suche in Google Scholar
Song, L., H. Yu, F. Ma, and X. Zhang. 2013. “Biological Pretreatment under Non-sterile Conditions for Enzymatic Hydrolysis of Corn Stover.” Bioresources 8: 3802–16, https://doi.org/10.15376/biores.8.3.3802-3816.Suche in Google Scholar
Suhara, H., S. Kodama, I. Kamei, N. Maekawa, and S. Meguro. 2012. “Screening of Selective Lignin-Degrading Basidiomycetes and Biological Pretreatment for Enzymatic Hydrolysis of Bamboo Culms.” International Biodeterioration & Biodegradation 75: 176–80, https://doi.org/10.1016/j.ibiod.2012.05.042.Suche in Google Scholar
Vanholme, R., K. Morreel, J. Ralph, and W. Boerjan. 2008. “Lignin Engineering.” Current Opinion in Plant Biology 11: 278–85, https://doi.org/10.1016/j.pbi.2008.03.005.Suche in Google Scholar PubMed
Vanholme, R., B. De Meester, J. Ralph, and W. Boerjan. 2019. “Lignin Biosynthesis and its Integration into Metabolism.” Current Opinion in Biotechnology 56: 230–9, https://doi.org/10.1016/j.copbio.2019.02.018.Suche in Google Scholar PubMed
Vaz, S. 2014. “Perspectives for the Brazilian Residual Biomass in Renewable Chemistry.” Pure and Applied Chemistry 86 (5): 833–42, https://doi.org/10.1515/pac-2013-0917.Suche in Google Scholar
Vieyra, H., U. Figueroa-López, A. Guevara-Morales, B. Vergara-Porras, E. S. Martín-Martínez, and M. Á. Aguilar-Méndez. 2015. “Optimized Monitoring of Production of Cellulose Nanowhiskers from Puntia ficus Indica (Nopal Cactus).” International Journal of Polymer Science 8: 871345, https://doi.org/10.1155/2015/871345.Suche in Google Scholar
Wong, D. W. S. 2008. “Structure and Action Mechanism of Ligninolytic Enzymes.” Applied Biochemistry and Biotechnology 157: 174–209, https://doi.org/10.1007/s12010-008-8279-z.Suche in Google Scholar PubMed
Yang, L., M. Lu, S. Carl, J. Mayer, J. Cushman, E. Tian, and H. Lin. 2015. “Biomass Characterization of Agave and Opuntia as Potential Biofuel Feedstocks.” Biomass and Bioenergy 76: 43–53, https://doi.org/10.1016/j.biombioe.2015.03.004.Suche in Google Scholar
Yñiguez-Balderas, B. S., B. Ortiz-Muñiz, J. Gómez-Rodríguez, B. Gutierrez-Rivera, and M. G. Aguilar-Uscanga. 2016. “Ethanol Production by Pichia Stipitis Immobilized on Sugarcane Bagasse.” Bioethanol 2 (1), https://doi.org/10.1515/bioeth-2016-0001.Suche in Google Scholar
Yousuf, A., D. Prozzi, and F. Sannino. 2020. Lignocellulosic Biomass to Liquid Biofuels. London, UK: Academic Press.Suche in Google Scholar
Yu, J., J. Zhang, J. He, Z. Liu, and Z. Yu. 2009. “Combinations of Mild Physical or Chemical Pretreatment with Biological Pretreatment for Enzymatic Hydrolysis of Rice Hull.” Bioresource Technology 100: 903–8, https://doi.org/10.1016/j.biortech.2008.07.025.Suche in Google Scholar PubMed
Zhao, J., W. Xiuwen, J. Hu, Q. Liu, D. Shen, and R. Xiao. 2014. “Thermal Degradation of Softwood Lignin and Hardwood Lignin by TG-FTIR and Py-GC/MS.” Polymer Degradation and Stability 108: 133–8, https://doi.org/10.1016/j.polymdegradstab.2014.06.006.Suche in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Special Issue Articles
- Preface of the special issue dedicated to the International Energy Conference, IEC 2021: sustainable energy as a platform for post-pandemic economic recovery
- Hydrodesulfurization of 4,6–Dimethyldibenzothiophene on NiMoP/γ–Al2O3 catalyst under reactive distillation conditions in a micro trickle bed reactor: solvent and temperature effect
- Bubble Column Bioreactor using native non-genetically modified organisms: a remediation alternative by hydrocarbon-polluted water from the Gulf of Mexico
- Depolymerization of lignin by extracellular activity of Pycnoporus cinnabarinus, to obtain cellulose
- Robust model-based control of a packed absorption column for the natural gas sweetening process
- The degradation of an aromatic organic compound by Aspergillus niger var tubingensis Ed8 produces metabolites that reduce Cr (VI)
- Analytical approach in higher predict residual error on MHD mixed convective motion of MoS2 engine-oil based nanofluid
- Photocatalytic degradation of naproxen using single-doped TiO2/FTO and co-doped TiO2-VO2/FTO thin films synthesized by sonochemistry
- Macroscopic analysis of chemical looping combustion with ilmenite versus conventional oxides as oxygen carriers
- Robust control designs for microalgae cultivation in continuous photobioreactors
- Evaluation of a rough-surface evaporator applied to an absorption heat transformer for water desalination
- Optimized infrared-assisted extraction to obtain total lipid from microalgae Scenedesmus obliquus: a green approach
Artikel in diesem Heft
- Frontmatter
- Special Issue Articles
- Preface of the special issue dedicated to the International Energy Conference, IEC 2021: sustainable energy as a platform for post-pandemic economic recovery
- Hydrodesulfurization of 4,6–Dimethyldibenzothiophene on NiMoP/γ–Al2O3 catalyst under reactive distillation conditions in a micro trickle bed reactor: solvent and temperature effect
- Bubble Column Bioreactor using native non-genetically modified organisms: a remediation alternative by hydrocarbon-polluted water from the Gulf of Mexico
- Depolymerization of lignin by extracellular activity of Pycnoporus cinnabarinus, to obtain cellulose
- Robust model-based control of a packed absorption column for the natural gas sweetening process
- The degradation of an aromatic organic compound by Aspergillus niger var tubingensis Ed8 produces metabolites that reduce Cr (VI)
- Analytical approach in higher predict residual error on MHD mixed convective motion of MoS2 engine-oil based nanofluid
- Photocatalytic degradation of naproxen using single-doped TiO2/FTO and co-doped TiO2-VO2/FTO thin films synthesized by sonochemistry
- Macroscopic analysis of chemical looping combustion with ilmenite versus conventional oxides as oxygen carriers
- Robust control designs for microalgae cultivation in continuous photobioreactors
- Evaluation of a rough-surface evaporator applied to an absorption heat transformer for water desalination
- Optimized infrared-assisted extraction to obtain total lipid from microalgae Scenedesmus obliquus: a green approach