Startseite Development of inexpensive, simple and environment-friendly solar selective absorber using copper nanoparticle
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Development of inexpensive, simple and environment-friendly solar selective absorber using copper nanoparticle

  • Aditi Yerudkar , Mamta Nair , Vishwanath H. Dalvi , Sudhir V. Panse , Vineeta D. Deshpande und Jyeshtharaj B. Joshi ORCID logo
Veröffentlicht/Copyright: 10. Februar 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Concentrating solar power is the most challenging and expensive yet highly efficient source of thermal energy from solar power. This is mainly due to the intermittency of the sun rays and expensive materials used to harness its energy. One of the main components adding to the cost is the solar selective absorber materials which are simply put spectrally selective coatings on a receiver system to capture maximum heat from the sun. These materials add to a large extent to the efficiency of converting the sun’s energy to thermal energy and in turn electricity. An ideal solar selective absorber possesses the property of absorbing maximum radiations in the solar spectrum and emit minimum in the thermal energy spectrum. In the current study, an inexpensive, simple and environment-friendly solar selective absorber is fabricated by a galvanic displacement reaction of copper nanoparticles on galvanised metal substrates. These copper nanoparticles have high absorptivity (0.8–0.9) by virtue of plasmon resonance property. The emissivity is low due to the highly reflective metal substrate. By varying size of the copper nanoparticles from 100 nm to 2 μm emissivity and absorptivity can be varied. However, achieving low emissivity and high absorptivity requires some optimising. The size depends on the concentration of precursor solution and immersion time of substrate. One of the remedies for controlling the deposition rate to tune the nanoparticle size and microstructure of deposited copper nanoparticle is by addition of a deposition inhibitor (e.g. Polyethylene glycol).


Corresponding authors: Vishwanath H. Dalvi, Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai, 400 019, India, Sudhir V. Panse, Marathi Vidnyan Parishad, Chunabhatti, Mumbai, 400 022, India; and Jyeshtharaj B. Joshi, Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai, 400 019, India; and Marathi Vidnyan Parishad, Chunabhatti, Mumbai, 400 022, India, E-mail: (V. H. Dalvo), (S. V. Panse), (J. B. Joshi)

Funding source: Marathi Vidnyan Parishad

Acknowledgements

The authors would like to thank Marathi Vidnyan Parishad, Chunabhatti, Mumbai for funding this work.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work is supported by Marathi Vidnyan Parishad.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Abbasi-Kesbi, F., A. M. Rashidi, and B. Astinchap. 2018. “Preparation of Ultrafine Grained Copper Nanoparticles via Immersion Deposit Method.” Applied Nanoscience 8 (3): 221–30. https://doi.org/10.1007/s13204-018-0646-7.Suche in Google Scholar

Almeco Absorber Surfaces TiNOX. https://www.almecogroup.com/en/pages/479-absorbers (letzter Zugriff January 03, 2021).Suche in Google Scholar

Amri, A., Z. T. Jiang, T. Pryor, C.-Y. Yin, and S. Djordjevic. 2014. “Developments in the Synthesis of Flat Plate Solar Selective Absorber Materials via Sol-Gel Methods: A Review.” Renewable and Sustainable Energy Reviews 36: 316–28. https://doi.org/10.1016/j.rser.2014.04.062.Suche in Google Scholar

Atkinson, C., C. L. Sansom, H. J. Almond, and C. P. Shaw. 2015. “Coatings for Concentrating Solar Systems – A Review.” Renewable and Sustainable Energy Reviews 45: 113–22. https://doi.org/10.1016/j.rser.2015.01.015.Suche in Google Scholar

Cao, F., K. McEnaney, G. Chen, and Z. Ren. 2014. “A Review of Cermet-Based Spectrally Selective Solar Absorbers.” Energy & Environmental Science 7 (5): 1615. https://doi.org/10.1039/c3ee43825b.Suche in Google Scholar

Chen, T., M. Pourmand, A. Feizpour, B. Cushman, and B. M. Reinhard. 2013. “Tailoring Plasmon Coupling in Self-Assembled One-Dimensional Au Nanoparticle Chains through Simultaneous Control of Size and Gap Separation.” The Journal of Physical Chemistry Letters 4 (13): 2147–52. https://doi.org/10.1021/jz401066g.Suche in Google Scholar PubMed PubMed Central

Chu, S., Y. Cui, and N. Liu. 2016. “The Path towards Sustainable Energy.” Nature Materials 16 (1): 16–22. https://doi.org/10.1038/nmat4834.Suche in Google Scholar PubMed

Coluccio, M. L., F. Gentile, M. Francardi, G. Perozziello, N. Malara, P. Candeloro, and E. Di Fabrizio. 2014. “Electroless Deposition and Nanolithography Can Control the Formation of Materials at the Nano-Scale for Plasmonic Applications.” Sensors 14 (4): 6056–83. https://doi.org/10.3390/s140406056.Suche in Google Scholar PubMed PubMed Central

Dan, A., H. C. Barshilia, K. Chattopadhyay, and B. Basu. 2017. “Solar Energy Absorption Mediated by Surface Plasma Polaritons in Spectrally Selective Dielectric-Metal-Dielectric Coatings: A Critical Review.” Renewable and Sustainable Energy Reviews 79: 1050–77. https://doi.org/10.1016/j.rser.2017.05.062.Suche in Google Scholar

Fasasi, A., P. R. Griffiths, and L. Scudiero. 2011. “Surface-Enhanced Infrared Absorption (SEIRA) of Adsorbates on Copper Nanoparticles Synthesized by Galvanic Displacement.” Applied Spectroscopy 65 (7): 750–5.10.1366/11-06274Suche in Google Scholar PubMed

Gawande, M. B., A. Goswami, F. X. Felpin, T. Asefa, X. Huang, R. Silva, X. Zou, R. Zboril, and R. S. Varma. 2016. “Cu and Cu-Based Nanoparticles: Synthesis and Applications in Catalysis.” Chemical Reviews 116 (6): 3722–811. https://doi.org/10.1021/acs.chemrev.5b00482.Suche in Google Scholar PubMed

Goldemberg, J. 2001. World Energy Assessment: Energy and the Challenge of Sustainability. New York, USA: United Nations.Suche in Google Scholar

González, F., E. Barrera-Calva, L. Huerta, and R. S. Mane. 2011. “Coatings of Fe3O4 Nanoparticles as Selective Solar Absorber.” The Open Surface Science Journal 3 (1): 131–5. https://doi.org/10.2174/1876531901103010131.Suche in Google Scholar

Hasegawa, M., Y. Okinaka, Y. Shacham-Diamand, and T. Osaka. 2006. “Void-Free Trench-Filling by Electroless Copper Deposition Using the Combination of Accelerating and Inhibiting Additives.” Electrochemical and Solid-State Letters 9 (8): C138. https://doi.org/10.1149/1.2206008.Suche in Google Scholar

Hill, M. R. H., and G. T. Rogers. 1978. “Polyethylene Glycol in Copper Electrodeposition onto a Rotating Disk Electrode.” Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 86 (1): 179–88. https://doi.org/10.1016/S0022-0728(78)80365-9.Suche in Google Scholar

Ho, C. K., A. R. Mahoney, A. Ambrosini, M. Bencomo, A. Hall, and T. N. Lambert. 2014. “Characterization of Pyromark 2500 Paint for High-Temperature Solar Receivers.” Journal of Solar Energy Engineering 136 (1): 2014–7. https://doi.org/10.1115/1.4024031.Suche in Google Scholar

Kalogirou, S. 2003. “The Potential of Solar Industrial Process Heat Applications.” Applied Energy 76 (4): 337–61. https://doi.org/10.1016/S0306-2619(02)00176-9.Suche in Google Scholar

Katumba, G., L. Olumekor, A. Forbes, G. Makiwa, B. Mwakikunga, J. Lu, and E. Wäckelgård. 2008. “Optical, Thermal and Structural Characteristics of Carbon Nanoparticles Embedded in ZnO and NiO as Selective Solar Absorbers.” Solar Energy Materials and Solar Cells 92 (10): 1285–92. https://doi.org/10.1016/j.solmat.2008.04.023.Suche in Google Scholar

Kelly, J. J., and A. C. West. 1998. “Copper Deposition in the Presence of Polyethylene Glycol: I. Quartz Crystal Microbalance Study.” Journal of the Electrochemical Society 145 (10): 3472. https://doi.org/10.1149/1.1838829.Suche in Google Scholar

Kennedy, C. E. 2002. Review of Mid- to High-Temperature Solar Selective Absorber Materials. United States: National Renewable Energy Laboratory.10.2172/15000706Suche in Google Scholar

Lauterbach, C., B. Schmitt, U. Jordan, and K. Vajen. 2012. “The Potential of Solar Heat for Industrial Processes in Germany.” Renewable and Sustainable Energy Reviews 16 (7): 5121–30. https://doi.org/10.1016/j.rser.2012.04.032.Suche in Google Scholar

Mandal, J., D. Wang, A. C. Overvig, N. N. Shi, D. Paley, A. Zangiabadi, Q. Cheng, K. Barmak, N. Yu, and Y. Yang. 2017. “Scalable, “Dip-and-Dry” Fabrication of a Wide-Angle Plasmonic Selective Absorber for High-Efficiency Solar–Thermal Energy Conversion.” Advanced Materials 29 (41): 1–9. https://doi.org/10.1002/adma.201702156.Suche in Google Scholar PubMed

Markal Pyromark High Temperature Paint. Also available at https://markal.com/products/pyromark-high-temperature-paint?variant=9204789084207.Suche in Google Scholar

Mekhilef, S., R. Saidur, and A. Safari. 2011. “A Review on Solar Energy Use in Industries.” Renewable and Sustainable Energy Reviews 15 (4): 1777–90. https://doi.org/10.1016/j.rser.2010.12.018.Suche in Google Scholar

Mohsen-Nia, M., H. Rasa, and H. Modarress. 2008. “Liquid–Liquid Equilibria for the Poly (Ethylene Glycol) + Water + Copper Sulfate System at Different Temperatures.” Journal of Chemical & Engineering Data 53 (4): 946–9. https://doi.org/10.1021/je700643u.Suche in Google Scholar

Osborn, T., N. Galiba, and P. A. Kohl. 2009. “Electroless Copper Deposition with PEG Suppression for All-Copper Flip-Chip Connections.” Journal of the Electrochemical Society 156 (7): D226. https://doi.org/10.1149/1.3123288.Suche in Google Scholar

Oxford. 2018. Oxford Lab Fine Chem LLP. Also available at https://www.oxfordlabfinechem.com/price.pdf.Suche in Google Scholar

Patil, R. G., A. N. Yerudkar, A. R. Joglekar, S. V. Panse, V. H. Dalvi, G. S. Shankarling, V. D. Deshpande, A. K. Nayak, and J. B. Joshi. 2020. “Transition Metal Compounds as Solar Selective Material: A Review.” Reviews in Chemical Engineering (forthcoming). https://doi.org/10.1515/revce-2020-0026.10.1515/revce-2020-0026Suche in Google Scholar

Pillai, S., and M. A. Green. 2010. “Plasmonics for Photovoltaic Applications.” Solar Energy Materials and Solar Cells 94 (9): 1481–6. https://doi.org/10.1016/j.solmat.2010.02.046.Suche in Google Scholar

Schlesinger, M., and M. Paunovic. 2011. Modern Electroplating, 55th ed. Hoboken, New Jersey, USA: John Wiley & Sons.10.1002/9780470602638Suche in Google Scholar

Selvakumar, N., and H. C. Barshilia. 2012. “Review of Physical Vapor Deposited (PVD) Spectrally Selective Coatings for Mid- and High-Temperature Solar Thermal Applications.” Solar Energy Materials and Solar Cells 98: 1–23. https://doi.org/10.1016/j.solmat.2011.10.028.Suche in Google Scholar

Sharma, A. K., C. Sharma, S. C. Mullick, and T. C. Kandpal. 2017. “Solar Industrial Process Heating: A Review.” Renewable and Sustainable Energy Reviews 78: 124–37. https://doi.org/10.1016/j.rser.2017.04.079.Suche in Google Scholar

Song, S.-J., S.-R. Choi, J.-G. Kim, and H.-G. Kim. 2016. “Effect of Molecular Weight of Polyethylene Glycol on Copper Electrodeposition in the Presence of Bis-3-Sulfopropyl-Disulfide.” International Journal of Electrochemical Science 11: 10067–79. https://doi.org/10.20964/2016.12.45.Suche in Google Scholar

Sukhatme, S. P., and J. K. Nayak. 2017. Solar Energy, 4th ed. New Delhi, India: McGraw-Hill Education.Suche in Google Scholar

Turing, A. M. 1990. “The Chemical Basis of Morphogenesis.” Bulletin of Mathematical Biology 52 (1–2): 153–97. https://doi.org/10.1007/BF02459572.Suche in Google Scholar PubMed

Xu, K., M. Du, L. Hao, J. Mi, Q. Yu, and S. Li. 2020. “A Review of High-Temperature Selective Absorbing Coatings for Solar Thermal Applications.” Journal of Materiomics 6 (1): 167–82. https://doi.org/10.1016/j.jmat.2019.12.012.Suche in Google Scholar

Yue, Z., B. Cai, L. Wang, X. Wang, and M. Gu. 2016. “Intrinsically Core-Shell Plasmonic Dielectric Nanostructures with Ultrahigh Refractive Index.” Science Advances 2 (3): e1501536. https://doi.org/10.1126/sciadv.1501536.Suche in Google Scholar PubMed PubMed Central

Received: 2020-08-31
Accepted: 2021-01-29
Published Online: 2021-02-10

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 1.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijcre-2020-0154/html
Button zum nach oben scrollen