Startseite Lebenswissenschaften Inhibitory effect of mitoquinone against the α-synuclein fibrillation and relevant neurotoxicity: possible role in inhibition of Parkinson’s disease
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Inhibitory effect of mitoquinone against the α-synuclein fibrillation and relevant neurotoxicity: possible role in inhibition of Parkinson’s disease

  • Gege Yu , Yonghui Wang und Jinhua Zhao EMAIL logo
Veröffentlicht/Copyright: 15. Oktober 2021

Abstract

Extensive studies have reported that interaction of α-synuclein amyloid species with neurons is a crucial mechanistic characteristic of Parkinson’s disease (PD) and small molecules can downregulate the neurotoxic effects induced by protein aggregation. However, the exact mechanism(s) of these neuroprotective effects by small molecules remain widely unknown. In the present study, α-synuclein samples in the amyloidogenic condition were aged for 120 h with or without different concentrations of mitoquinone (MitoQ) as a quinone derivative compound and the amyloid characteristics and the relevant neurotoxicity were evaluated by Thioflavin T (ThT)/Nile red fluorescence, Congo red absorption, circular dichroism (CD), transmission electron microscopy (TEM), cell viability, lactate dehydrogenase (LDH), reactive oxygen species (ROS), reactive nitrogen species (RNS), malondialdehyde (MDA), superoxide dismutase (SOD), and caspase-9/-3 activity assays. Results clearly showed the capacity of MitoQ on the inhibition of the formation of α-synuclein fibrillation products through modulation of the aggregation pathway by an effect on the kinetic parameters. Also, it was shown that α-synuclein samples aged for 120 h with MitoQ trigger less neurotoxic effects against SH-SY5Y cells than α-synuclein amyloid alone. Indeed, co-incubation of α-synuclein with MitoQ reduced the membrane leakage, oxidative and nitro-oxidative stress, modifications of macromolecules, and apoptosis.


Corresponding author: Jinhua Zhao, Department of Neurology, The First People’s Hospital of Xianyang, No. 10, Biyuan Road, Qindu District, 712000, Xianyang, Shaanxi Province, China, E-mail:
Gege Yu and Yonghui Wang contributed equally to this work.

Acknowledgments

We thank our colleagues for many scientific discussions and support of the last years.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare that there is no conflict of interests associated with this work.

References

Acuña, L., Hamadat, S., Corbalán, N.S., González-Lizárraga, F., dos-Santos-Pereira, M., Rocca, J., Sepúlveda Díaz, J., Del-Bel, E., Papy-García, D., Chehín, R.N., et al.. (2019). Rifampicin and its derivative rifampicin quinone reduce microglial inflammatory responses and neurodegeneration induced in vitro by α-synuclein fibrillary aggregates. Cells 8: 776–788, https://doi.org/10.3390/cells8080776.Suche in Google Scholar PubMed PubMed Central

Borana, M.S., Mishra, P., Pissurlenkar, R.R., Hosur, R.V., and Ahmad, B. (2014). Curcumin and kaempferol prevent lysozyme fibril formation by modulating aggregation kinetic parameters. Biochim. Biophys. Acta Protein Proteonomics 1844: 670–680, https://doi.org/10.1016/j.bbapap.2014.01.009.Suche in Google Scholar PubMed

Bertrand, E., Lewandowska, E., Stępień, T., Szpak, G.M., Pasennik, E., and Modzelewska, J. (2008). Amyloid angiopathy in idiopathic Parkinson’s disease. Immunohistochemical and ultrastructural study. Folia Neuropathol. 46: 1–8.Suche in Google Scholar

Brentnall, M., Rodriguez-Menocal, L., De Guevara, R.L., Cepero, E., and Boise, L.H. (2013). Caspase-9, caspase-3 and caspase-7 have distinct roles during intrinsic apoptosis. BMC Cell Biol. 14: 1–9, https://doi.org/10.1186/1471-2121-14-32.Suche in Google Scholar PubMed PubMed Central

Compta, Y., Parkkinen, L., Kempster, P., Selikhova, M., Lashley, T., Holton, J.L., Lees, A.J., and Revesz, T. (2014). The significance of α-synuclein, amyloid-β and tau pathologies in Parkinson’s disease progression and related dementia. Neurodegener. Dis. 13: 154–156, https://doi.org/10.1159/000354670.Suche in Google Scholar PubMed PubMed Central

Du, X.Y., Xie, X.X., and Liu, R.T. (2020). The role of α-synuclein oligomers in Parkinson’s disease. Int. J. Mol. Sci. 21: 8645–8655, https://doi.org/10.3390/ijms21228645.Suche in Google Scholar PubMed PubMed Central

Fardanesh, A., Zibaie, S., Shariati, B., Attar, F., Rouhollah, F., Akhtari, K., Shahpasand, K., Saboury, A.A., and Falahati, M. (2019). Amorphous aggregation of tau in the presence of titanium dioxide nanoparticles: biophysical, computational, and cellular studies. Int. J. Nanomed. 14: 901–910, https://doi.org/10.2147/ijn.s194658.Suche in Google Scholar

Ghosh, S., Kundu, A., and Chattopadhyay, K. (2018). Small molecules attenuate the interplay between conformational fluctuations, early oligomerization and amyloidosis of α-synuclein. Sci. Rep. 8: 1–16, https://doi.org/10.1038/s41598-018-23718-3.Suche in Google Scholar PubMed PubMed Central

Gilan, S.S.T., Rayat, D.Y., Mustafa, T.A., Aziz, F.M., Shahpasand, K., Akhtari, K., Salihi, A., Abou-Zied, O.K., and Falahati, M. (2019). α-synuclein interaction with zero-valent iron nanoparticles accelerates structural rearrangement into amyloid-susceptible structure with increased cytotoxic tendency. Int. J. Nanomed. 14: 4637–4645, https://doi.org/10.2147/ijn.s212387.Suche in Google Scholar

Guo, Y., Liu, B.S., Li, Z.L., and Lv, Y. (2014). Comparative study of binding constants between small molecule drugs and protein calculated by different equation. Chin. J. Lumin. 35: 1114–1119, https://doi.org/10.3788/fgxb20143509.1114.Suche in Google Scholar

Ingelsson, M. (2016). Alpha-synuclein oligomers—neurotoxic molecules in Parkinson’s disease and other Lewy body disorders. Front. Neurosci. 10: 408–413, https://doi.org/10.3389/fnins.2016.00408.Suche in Google Scholar PubMed PubMed Central

Islam, M.T. (2017). Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders. Neurol. Res. 39: 73–82, https://doi.org/10.1080/01616412.2016.1251711.Suche in Google Scholar

Jagadeesan, A.J., Murugesan, R., Devi, S.V., Meera, M., Madhumala, G., Padmaja, M.V., Ramesh, A., Banerjee, A., Sushmitha, S., Khokhlov, A.N., et al.. (2017). Current trends in etiology, prognosis and therapeutic aspects of Parkinson’s disease: a review. Acta Biomed.: Atenei Parmensis. 88: 249–255, https://doi.org/10.23750/abm.v88i3.6063.Suche in Google Scholar

James, A.M., Sharpley, M.S., Manas, A.R.B., Frerman, F.E., Hirst, J., Smith, R.A., and Murphy, M.P. (2007). Interaction of the mitochondria-targeted antioxidant MitoQ with phospholipid bilayers and ubiquinone oxidoreductases. J. Biol. Chem. 282: 14708–14718, https://doi.org/10.1074/jbc.m611463200.Suche in Google Scholar

Kelso, G.F., Porteous, C.M., Coulter, C.V., Hughes, G., Porteous, W.K., Ledgerwood, E.C., Smith, R.A., and Murphy, M.P. (2001). Selective targeting of a redox-active ubiquinone to mitochondria within cells: antioxidant and antiapoptotic properties. J. Biol. Chem. 276: 4588–4596, https://doi.org/10.1074/jbc.m009093200.Suche in Google Scholar

Khodabandeh, A., Yakhchian, R., Hasan, A., Paray, B.A., Shahi, F., Rasti, B., Mirpour, M., Sharifi, M., Derakhshankhah, H., Akhtari, K., et al.. (2020). Silybin as a potent inhibitor of a-synuclein aggregation and associated cytotoxicity against neuroblastoma cells induced by zinc oxide nanoparticles. J. Mol. Liq. 310: 113198, https://doi.org/10.1016/j.molliq.2020.113198.Suche in Google Scholar

Kobayashi, M., Kim, J., Kobayashi, N., Han, S., Nakamura, C., Ikebukuro, K., and Sode, K. (2006). Pyrroloquinoline quinone (PQQ) prevents fibril formation of α-synuclein. Biochem. Biophys. Res. Commun. 349: 1139–1144, https://doi.org/10.1016/j.bbrc.2006.08.144.Suche in Google Scholar

De Lau, L.M. and Breteler, M.M. (2006). Epidemiology of Parkinson’s disease. Lancet Neurol. 5: 525–535, https://doi.org/10.1016/s1474-4422(06)70471-9.Suche in Google Scholar

Lévy, E., El Banna, N., Baïlle, D., Heneman-Masurel, A., Truchet, S., Rezaei, H., Huang, M.E., Béringue, V., Martin, D., and Vernis, L. (2019). Causative links between protein aggregation and oxidative stress: a review. Int. J. Mol. Sci. 20: 3896–3899, https://doi.org/10.3390/ijms20163896.Suche in Google Scholar PubMed PubMed Central

Ludtmann, M.H., Angelova, P.R., Horrocks, M.H., Choi, M.L., Rodrigues, M., Baev, A.Y., Berezhnov, A.V., Yao, Z., Little, D., Banushi, B., et al.. (2018). α-synuclein oligomers interact with ATP synthase and open the permeability transition pore in Parkinson’s disease. Nat. Commun. 9: 1–16, https://doi.org/10.1038/s41467-018-04422-2.Suche in Google Scholar PubMed PubMed Central

Melki, R. (2018). Alpha-synuclein and the prion hypothesis in Parkinson’s disease. Rev. Neurol. 174: 644–652, https://doi.org/10.1016/j.neurol.2018.08.002.Suche in Google Scholar PubMed

Moons, R., van der Wekken-de Bruijne, R., Maudsley, S., Lemière, F., Lambeir, A.M., and Sobott, F. (2020). Effects of detergent on α-synuclein structure: a native MS-Ion mobility study. Int. J. Mol. Sci. 21: 7884–7891, https://doi.org/10.3390/ijms21217884.Suche in Google Scholar PubMed PubMed Central

Naskhi, A., Jabbari, S., Othman, G.Q., Aziz, F.M., Salihi, A., Sharifi, M., Sari, S., Akhtari, K., Abdulqadir, S.Z., Alasady, A.A., et al.. (2019). Vitamin K1 as a potential molecule for reducing single-walled carbon nanotubes-stimulated α-synuclein structural changes and cytotoxicity. Int. J. Nanomed. 14: 8433–8440, https://doi.org/10.2147/ijn.s223182.Suche in Google Scholar

Necula, M., Chirita, C.N., and Kuret, J. (2003). Rapid anionic micelle-mediated α-synuclein fibrillization in vitro. J. Biol. Chem. 278: 46674–46680, https://doi.org/10.1074/jbc.m308231200.Suche in Google Scholar

Nepovimova, E., Uliassi, E., Korabecny, J., Pena-Altamira, L.E., Samez, S., Pesaresi, A., Garcia, G.E., Bartolini, M., Andrisano, V., Bergamini, C., et al.. (2014). Multitarget drug design strategy: quinone–tacrine hybrids designed to block amyloid-β aggregation and to exert anticholinesterase and antioxidant effects. J. Med. Chem. 57: 8576–8589, https://doi.org/10.1021/jm5010804.Suche in Google Scholar PubMed

Niki, E. (2012). Do antioxidants impair signaling by reactive oxygen species and lipid oxidation products? FEBS Lett. 586: 3767–3770, https://doi.org/10.1016/j.febslet.2012.09.025.Suche in Google Scholar PubMed

Onal, H., Martorana, R., Sehgal, A., Wastella, C., Sacks, B., Pjetergjoka, A., Barsotti, R., Young, L., and Chen, Q. (2020). Mitochondria targeted antioxidants mitoquinone and SKQ1 provide protection against doxorubicin induced cell damage on H9c2 myoblast. Faseb. J. 34: 1, https://doi.org/10.1096/fasebj.2020.34.s1.05183.Suche in Google Scholar

Ortega, A., Rincón, Á., Jiménez-Aliaga, K.L., Bermejo-Bescós, P., Martín-Aragón, S., Molina, M.T., and Csákÿ, A.G. (2011). Synthesis and evaluation of arylquinones as BACE1 inhibitors, β-amyloid peptide aggregation inhibitors, and destabilizers of preformed β-amyloid fibrils. Bioorg. Med. Chem. Lett 21: 2183–2187, https://doi.org/10.1016/j.bmcl.2011.03.023.Suche in Google Scholar PubMed

Pan, Q., Ban, Y., and Khan, S. (2021). Antioxidant activity of calycosin against α-synuclein amyloid fibrils-induced oxidative stress in neural-like cells as a model of preventive care studies in Parkinson’s disease. Int. J. Biol. Macromol. 182: 91–97, https://doi.org/10.1016/j.ijbiomac.2021.03.186.Suche in Google Scholar PubMed

Pang, C., Zhang, N., and Falahati, M. (2021). Acceleration of α-synuclein fibril formation and associated cytotoxicity stimulated by silica nanoparticles as a model of neurodegenerative diseases. Int. J. Biol. Macromol. 169: 532–540, https://doi.org/10.1016/j.ijbiomac.2020.12.130.Suche in Google Scholar PubMed

Pujols, J., Peña-Díaz, S., Lázaro, D.F., Peccati, F., Pinheiro, F., González, D., Carija, A., Navarro, S., Conde-Giménez, M., García, J., et al.. (2018). Small molecule inhibits α-synuclein aggregation, disrupts amyloid fibrils, and prevents degeneration of dopaminergic neurons. Proc. Natl. Acad. Sci. U. S. A. 115: 10481–10486, https://doi.org/10.1073/pnas.1804198115.Suche in Google Scholar PubMed PubMed Central

Rao, V.A., Klein, S.R., Bonar, S.J., Zielonka, J., Mizuno, N., Dickey, J.S., Keller, P.W., Joseph, J., Kalyanaraman, B., and Shacter, E. (2010). The antioxidant transcription factor Nrf2 negatively regulates autophagy and growth arrest induced by the anticancer redox agent mitoquinone. J. Biol. Chem. 285: 34447–34459, https://doi.org/10.1074/jbc.m110.133579.Suche in Google Scholar PubMed PubMed Central

Riedl, S.J. and Shi, Y. (2004). Molecular mechanisms of caspase regulation during apoptosis. Nat. Rev. Mol. Cell Biol. 5: 897–907, https://doi.org/10.1038/nrm1496.Suche in Google Scholar PubMed

Ryter, S.W., Kim, H.P., Hoetzel, A., Park, J.W., Nakahira, K., Wang, X., and Choi, A.M. (2007). Mechanisms of cell death in oxidative stress. Antioxidants Redox Signal. 9: 49–89, https://doi.org/10.1089/ars.2007.9.49.Suche in Google Scholar PubMed

da Silva, F.L., Cerqueira, E.C., de Freitas, M.S., Gonçalves, D.L., Costa, L.T., and Follmer, C. (2013). Vitamins K interact with N-terminus α-synuclein and modulate the protein fibrillization in vitro. Exploring the interaction between quinones and α-synuclein. Neurochem. Int. 62: 103–112, https://doi.org/10.1016/j.neuint.2012.10.001.Suche in Google Scholar PubMed

Scherzer-Attali, R., Pellarin, R., Convertino, M., Frydman-Marom, A., Egoz-Matia, N., Peled, S., Levy-Sakin, M., Shalev, D.E., Caflisch, A., Gazit, E., et al.. (2010). Complete phenotypic recovery of an Alzheimer’s disease model by a quinone-tryptophan hybrid aggregation inhibitor. PLoS One 5: 11101–11108, https://doi.org/10.1371/journal.pone.0011101.Suche in Google Scholar PubMed PubMed Central

Shariatizi, S., Meratan, A.A., Ghasemi, A., and Nemat-Gorgani, M. (2015). Inhibition of amyloid fibrillation and cytotoxicity of lysozyme fibrillation products by polyphenols. Int. J. Biol. Macromol. 80: 95–106, https://doi.org/10.1016/j.ijbiomac.2015.06.030.Suche in Google Scholar PubMed

Spiess, M., Friberg, M., Beuret, N., Prescianotto-Baschong, C., and Rutishauser, J. (2020). Role of protein aggregation and degradation in autosomal dominant neurohypophyseal diabetes insipidus. Mol. Cell Biol. 501: 110653, https://doi.org/10.1016/j.mce.2019.110653.Suche in Google Scholar PubMed

Staats, R., Michaels, T.C., Flagmeier, P., Chia, S., Horne, R.I., Habchi, J., Linse, S., Knowles, T.P., Dobson, C.M., and Vendruscolo, M. (2020). Screening of small molecules using the inhibition of oligomer formation in α-synuclein aggregation as a selection parameter. Commun. Chem. 3: 1–9, https://doi.org/10.1038/s42004-020-00412-y.Suche in Google Scholar

Stanković, I.M., Niu, S., Hall, M.B., and Zarić, S.D. (2020). Role of aromatic amino acids in amyloid self-assembly. Int. J. Biol. Macromol. 156: 949–959, https://doi.org/10.1016/j.ijbiomac.2020.03.064.Suche in Google Scholar PubMed

Ünal, İ., Çalışkan-Ak, E., Üstündağ, Ü.V., Ateş, P.S., Alturfan, A.A., Altinoz, M.A., Elmaci, I., and Emekli-Alturfan, E. (2020). Neuroprotective effects of mitoquinone and oleandrin on Parkinson’s disease model in zebrafish. Int. J. Neurosci. 130: 574–582, https://doi.org/10.1080/00207454.2019.1698567.Suche in Google Scholar PubMed

Wang, S.W., Wang, Y.J., Su, Y.J., Zhou, W.W., Yang, S.G., Zhang, R., Zhao, M., Li, Y.N., Zhang, Z.P., Zhan, D.W., et al.. (2012). Rutin inhibits β-amyloid aggregation and cytotoxicity, attenuates oxidative stress, and decreases the production of nitric oxide and proinflammatory cytokines. Neurotoxicology 33: 482–490, https://doi.org/10.1016/j.neuro.2012.03.003.Suche in Google Scholar PubMed

Yang, S.G., Wang, W.Y., Ling, T.J., Feng, Y., Du, X.T., Zhang, X., Sun, X.X., Zhao, M., Xue, D., Yang, Y., et al.. (2010). Alpha-tocopherol quinone inhibits beta-amyloid aggregation and cytotoxicity, disaggregates preformed fibrils and decreases the production of reactive oxygen species, NO and inflammatory cytokines. Neurochem. Int. 57: 914–922, https://doi.org/10.1016/j.neuint.2010.09.011.Suche in Google Scholar PubMed

Yang, D., Xu, D., Wang, T., Yuan, Z., Liu, L., Shen, Y., and Wen, F. (2021). Mitoquinone ameliorates cigarette smoke-induced airway inflammation and mucus hypersecretion in mice. Int. Immunopharm. 90: 107149–107155, https://doi.org/10.1016/j.intimp.2020.107149.Suche in Google Scholar PubMed

Zaman, M., Khan, A.N., Zakariya, S.M., and Khan, R.H. (2019). Protein misfolding, aggregation and mechanism of amyloid cytotoxicity: an overview and therapeutic strategies to inhibit aggregation. Int. J. Biol. Macromol. 134: 1022–1037, https://doi.org/10.1016/j.ijbiomac.2019.05.109.Suche in Google Scholar PubMed

Zand, Z., Khaki, P.A., Salihi, A., Sharifi, M., Nanakali, N.M.Q., Alasady, A.A., Aziz, F.M., Shahpasand, K., Hasan, A., and Falahati, M. (2019). Cerium oxide NPs mitigate the amyloid formation of α-synuclein and associated cytotoxicity. Int. J. Nanomed. 14: 6989–6995, https://doi.org/10.2147/ijn.s220380.Suche in Google Scholar PubMed PubMed Central

Zhang, L., Reyes, A., and Wang, X. (2018). The role of mitochondria-targeted antioxidant MitoQ in neurodegenerative disease. Mol. Cell. Ther. 1: 1–8, https://doi.org/10.13052/2052-8426-2018-01.Suche in Google Scholar

Zhang, X., Wesén, E., Kumar, R., Bernson, D., Gallud, A., Paul, A., Wittung-Stafshede, P., and Esbjörner, E.K. (2020). Correlation between cellular uptake and cytotoxicity of fragmented α-synuclein amyloid fibrils suggests intracellular basis for toxicity. ACS Chem. Neurosci. 11: 233–241, https://doi.org/10.1021/acschemneuro.9b00562.Suche in Google Scholar PubMed

Received: 2021-07-08
Accepted: 2021-09-16
Published Online: 2021-10-15
Published in Print: 2022-02-23

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 29.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/hsz-2021-0312/html
Button zum nach oben scrollen