Startseite Ectopic overexpression of Nanog induces tumorigenesis in non-tumorous fibroblasts
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Ectopic overexpression of Nanog induces tumorigenesis in non-tumorous fibroblasts

  • Yo Seph Park , Judee Grace E. Nemeño , Na Young Choi , Jeong Ik Lee , Kisung Ko , Seung-Cheol Choi , Wan Seop Kim , Dong Wook Han , Natalia Tapia und Kinarm Ko EMAIL logo
Veröffentlicht/Copyright: 4. Januar 2016

Abstract

Key regulatory genes in pluripotent stem cells are of interest not only as reprogramming factors but also as regulators driving tumorigenesis. Nanog is a transcription factor involved in the maintenance of embryonic stem cells and is one of the reprogramming factors along with Oct4, Sox2, and Lin28. Nanog expression has been detected in different types of tumors, and its expression is a poor prognosis for cancer patients. However, there is no clear evidence that Nanog is functionally involved in tumorigenesis. In this study, we induced overexpression of Nanog in mouse embryonic fibroblast cells and subsequently assessed their morphological changes, proliferation rate, and tumor formation ability. We found that Nanog overexpression induced immortalization of mouse embryonic fibroblast cells (MEFs) and increased their proliferation rate in vitro. We also found that formation of tumors after subcutaneous injection of retroviral-Nanog infected MEFs (N-MEFs) into athymic mouse. Cancer-related genes such as Bmi1 were expressed at high levels in N-MEFs. Hence, our results demonstrate that Nanog is able to transform normal somatic cells into tumor cells.


Corresponding author: Kinarm Ko, Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul 05029, Korea; Center for Stem Cell Research, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea; and Research Institute of Medical Science, Konkuk University, Seoul 05029, Korea, e-mail:
aYo Seph Park and Judee Grace E. Nemeño: These authors contributed equally to this work.

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (2014R1A2A01007212 and 2015M3A9C7030066).

References

Abdouh, M., Facchino, S., Chatoo, W., Balasingam, V., Ferreira, J., and Bernier, G. (2009). BMI1 sustains human glioblastoma multiforme stem cell renewal. J. Neurosci. 29, 8884–8896.10.1523/JNEUROSCI.0968-09.2009Suche in Google Scholar PubMed PubMed Central

Allegra, E., Trapasso, S., Pisani, D., and Puzzo, L. (2014). The role of BMI1 as a biomarker of cancer stem cells in head and neck cancer: a review. Oncology 86, 199–205.10.1159/000358598Suche in Google Scholar PubMed

Bahl, K., Saraya, A., and Sharma, R. (2012). Increased levels of circulating and tissue mRNAs of Oct-4, Sox-2, Bmi-1 and Nanog is ESCC patients: potential tool for minimally invasive cancer diagnosis. Biomark Insights 7, 27–37.10.4137/BMI.S8452Suche in Google Scholar PubMed PubMed Central

Borrull, A., Ghislin, S., Deshayes, F., Lauriol, J., Alcaide-Loridan, C., and Middendorp, S. (2012). Nanog and Oct4 overexpression increases motility and transmigration of melanoma cells. J. Cancer Res. Clin. Oncol. 138, 1145–1154.10.1007/s00432-012-1186-2Suche in Google Scholar PubMed

Boudjadi, S., Carrier, J.C., and Beaulieu, J.F. (2013). Integrin alpha1 subunit is up-regulated in colorectal cancer. Biomarker Res. 1, 16.10.1186/2050-7771-1-16Suche in Google Scholar PubMed PubMed Central

Boyer, L.A., Lee, T.I., Cole, M.F., Johnstone, S.E., Levine, S.S., Zucker, J.P., Guenther, M.G., Kumar, R.M., Murray, H.L., Jenner, R.G., et al. (2005). Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122, 947–956.10.1016/j.cell.2005.08.020Suche in Google Scholar PubMed PubMed Central

Choi, S.C., Choi, J.H., Park, C.Y., Ahn, C.M., Hong, S.J., and Lim, D.S. (2012). Nanog regulates molecules involved in stemness and cell cycle-signaling pathway for maintenance of pluripotency of P19 embryonal carcinoma stem cells. J. Cell. Physiol. 227, 3678–3692.10.1002/jcp.24076Suche in Google Scholar PubMed

Detchokul, S., Newell, B., Williams, E.D., and Frauman, A.G. (2014). CD151 is associated with prostate cancer cell invasion and lymphangiogenesis in vivo. Oncol. Rep. 31, 241–247.10.3892/or.2013.2823Suche in Google Scholar PubMed

Dimri, G.P., Martinez, J.L., Jacobs, J.J., Keblusek, P., Itahana, K., Van Lohuizen, M., Campisi, J., Wazer, D.E., and Band, V. (2002). The Bmi-1 oncogene induces telomerase activity and immortalizes human mammary epithelial cells. Cancer Res. 62, 4736–4745.Suche in Google Scholar

Futreal, P.A., Coin, L., Marshall, M., Down, T., Hubbard, T., Wooster, R., Rahman, N., and Stratton, M.R. (2004). A census of human cancer genes. Nat. Rev. Cancer 4, 177–183.10.1038/nrc1299Suche in Google Scholar PubMed PubMed Central

Gaudin, F., Nasreddine, S., Donnadieu, A.C., Emilie, D., Combadiere, C., Prevot, S., Machelon, V., and Balabanian, K. (2011). Identification of the chemokine CX3CL1 as a new regulator of malignant cell proliferation in epithelial ovarian cancer. PloS One 6, e21546.10.1371/journal.pone.0021546Suche in Google Scholar PubMed PubMed Central

Ghislin, S., Deshayes, F., Middendorp, S., Boggetto, N., and Alcaide-Loridan, C. (2012). PHF19 and Akt control the switch between proliferative and invasive states in melanoma. Cell Cycle 11, 1634–1645.10.4161/cc.20095Suche in Google Scholar PubMed

Grad, I., Hibaoui, Y., Jaconi, M., Chicha, L., Bergstrom-Tengzelius, R., Sailani, M.R., Pelte, M.F., Dahoun, S., Mitsiadis, T.A., Tohonen, V., et al. (2011). NANOG priming before full reprogramming may generate germ cell tumours. Eur. Cell. Mater. 22, 258–274; discussio 274.10.22203/eCM.v022a20Suche in Google Scholar

Guo, D., Huang, J., and Gong, J. (2012). Bone morphogenetic protein 4 (BMP4) is required for migration and invasion of breast cancer. Mol. Cell. Biochem. 363, 179–190.10.1007/s11010-011-1170-1Suche in Google Scholar PubMed

Hanna, J., Saha, K., Pando, B., van Zon, J., Lengner, C.J., Creyghton, M.P., van Oudenaarden, A., and Jaenisch, R. (2009). Direct cell reprogramming is a stochastic process amenable to acceleration. Nature 462, 595–601.10.1038/nature08592Suche in Google Scholar PubMed PubMed Central

Heaney, J.D., Anderson, E.L., Michelson, M.V., Zechel, J.L., Conrad, P.A., Page, D.C., and Nadeau, J.H. (2012). Germ cell pluripotency, premature differentiation and susceptibility to testicular teratomas in mice. Development 139, 1577–1586.10.1242/dev.076851Suche in Google Scholar PubMed PubMed Central

Ho, B., Olson, G., Figel, S., Gelman, I., Cance, W.G., and Golubovskaya, V.M. (2012). Nanog increases focal adhesion kinase (FAK) promoter activity and expression and directly binds to FAK protein to be phosphorylated. J. Biol. Chem. 287, 18656–18673.10.1074/jbc.M111.322883Suche in Google Scholar PubMed PubMed Central

Hyslop, L., Stojkovic, M., Armstrong, L., Walter, T., Stojkovic, P., Przyborski, S., Herbert, M., Murdoch, A., Strachan, T., and Lako, M. (2005). Downregulation of NANOG induces differentiation of human embryonic stem cells to extraembryonic lineages. Stem cells 23, 1035–1043.10.1634/stemcells.2005-0080Suche in Google Scholar PubMed

Jeter, C.R., Badeaux, M., Choy, G., Chandra, D., Patrawala, L., Liu, C., Calhoun-Davis, T., Zaehres, H., Daley, G.Q., and Tang, D.G. (2009). Functional evidence that the self-renewal gene NANOG regulates human tumor development. Stem cells 27, 993–1005.10.1002/stem.29Suche in Google Scholar PubMed PubMed Central

Jeter, C.R., Liu, B., Liu, X., Chen, X., Liu, C., Calhoun-Davis, T., Repass, J., Zaehres, H., Shen, J.J., and Tang, D.G. (2011). NANOG promotes cancer stem cell characteristics and prostate cancer resistance to androgen deprivation. Oncogene 30, 3833–3845.10.1038/onc.2011.114Suche in Google Scholar PubMed PubMed Central

Lin, Y.L., Han, Z.B., Xiong, F.Y., Tian, L.Y., Wu, X.J., Xue, S.W., Zhou, Y.R., Deng, J.X., and Chen, H.X. (2011). Malignant transformation of 293 cells induced by ectopic expression of human Nanog. Mol. Cell. Biochem. 351, 109–116.10.1007/s11010-011-0717-5Suche in Google Scholar PubMed

Lukacs, R.U., Memarzadeh, S., Wu, H., and Witte, O.N. (2010). Bmi-1 is a crucial regulator of prostate stem cell self-renewal and malignant transformation. Cell Stem Cell 7, 682–693.10.1016/j.stem.2010.11.013Suche in Google Scholar PubMed PubMed Central

Marotta, L.L., Almendro, V., Marusyk, A., Shipitsin, M., Schemme, J., Walker, S.R., Bloushtain-Qimron, N., Kim, J.J., Choudhury, S.A., Maruyama, R., et al. (2011). The JAK2/STAT3 signaling pathway is required for growth of CD44+CD24- stem cell-like breast cancer cells in human tumors. J. Clin. Invest. 121, 2723–2735.10.1172/JCI44745Suche in Google Scholar PubMed PubMed Central

Meng, H.M., Zheng, P., Wang, X.Y., Liu, C., Sui, H.M., Wu, S.J., Zhou, J., Ding, Y.Q., and Li, J. (2010). Over-expression of Nanog predicts tumor progression and poor prognosis in colorectal cancer. Cancer Biol. Ther. 9, 295–302.10.4161/cbt.9.4.10666Suche in Google Scholar PubMed

Moon, J.H., Kwon, S., Jun, E.K., Kim, A., Whang, K.Y., Kim, H., Oh, S., Yoon, B.S., and You, S. (2011). Nanog-induced dedifferentiation of p53-deficient mouse astrocytes into brain cancer stem-like cells. Biochem. Biophys. Res. Commun. 412, 175–181.10.1016/j.bbrc.2011.07.070Suche in Google Scholar PubMed

Murat, A., Migliavacca, E., Hussain, S.F., Heimberger, A.B., Desbaillets, I., Hamou, M.F., Ruegg, C., Stupp, R., Delorenzi, M., and Hegi, M.E. (2009). Modulation of angiogenic and inflammatory response in glioblastoma by hypoxia. PloS One 4, e5947.10.1371/journal.pone.0005947Suche in Google Scholar PubMed PubMed Central

Paranjape, A.N., Balaji, S.A., Mandal, T., Krushik, E.V., Nagaraj, P., Mukherjee, G., and Rangarajan, A. (2014). Bmi1 regulates self-renewal and epithelial to mesenchymal transition in breast cancer cells through Nanog. BMC Cancer 14, 785.10.1186/1471-2407-14-785Suche in Google Scholar PubMed PubMed Central

Piestun, D., Kochupurakkal, B.S., Jacob-Hirsch, J., Zeligson, S., Koudritsky, M., Domany, E., Amariglio, N., Rechavi, G., and Givol, D. (2006). Nanog transforms NIH3T3 cells and targets cell-type restricted genes. Biochem. Biophys. Res. Commun. 343, 279–285.10.1016/j.bbrc.2006.02.152Suche in Google Scholar PubMed

Ray, P., Stacer, A.C., Fenner, J., Cavnar, S.P., Meguiar, K., Brown, M., Luker, K.E., and Luker, G.D. (2015). CXCL12-gamma in primary tumors drives breast cancer metastasis. Oncogene 34, 2043–2051.10.1038/onc.2014.157Suche in Google Scholar PubMed PubMed Central

Salomonnson, E., Stacer, A.C., Ehrlich, A., Luker, K.E., and Luker, G.D. (2013). Imaging CXCL12-CXCR4 signaling in ovarian cancer therapy. PLoS One 8, e51500.10.1371/journal.pone.0051500Suche in Google Scholar PubMed PubMed Central

Schwarz, B.A., Bar-Nur, O., Silva, J.C., and Hochedlinger, K. (2014). Nanog is dispensable for the generation of induced pluripotent stem cells. Curr. Biol. 24, 347–350.10.1016/j.cub.2013.12.050Suche in Google Scholar PubMed PubMed Central

Shen, B., Zheng, M.Q., Lu, J.W., Jiang, Q., Wang, T.H., and Huang, X.E. (2013). CXCL12-CXCR4 promotes proliferation and invasion of pancreatic cancer cells. APJCP 14, 5403–5408.10.7314/APJCP.2013.14.9.5403Suche in Google Scholar PubMed

Song, W., Tao, K., Li, H., Jin, C., Song, Z., Li, J., Shi, H., Li, X., Dang, Z., and Dou, K. (2010). Bmi-1 is related to proliferation, survival and poor prognosis in pancreatic cancer. Cancer Sci. 101, 1754–1760.10.1111/j.1349-7006.2010.01577.xSuche in Google Scholar PubMed

Wang, H., Lathia, J.D., Wu, Q., Wang, J., Li, Z., Heddleston, J.M., Eyler, C.E., Elderbroom, J., Gallagher, J., Schuschu, J., et al. (2009). Targeting interleukin 6 signaling suppresses glioma stem cell survival and tumor growth. Stem Cells 27, 2393–2404.10.1002/stem.188Suche in Google Scholar PubMed PubMed Central

Wang, J., Rao, S., Chu, J., Shen, X., Levasseur, D.N., Theunissen, T.W., and Orkin, S.H. (2006). A protein interaction network for pluripotency of embryonic stem cells. Nature 444, 364–368.10.1038/nature05284Suche in Google Scholar PubMed

Wiederschain, D., Chen, L., Johnson, B., Bettano, K., Jackson, D., Taraszka, J., Wang, Y.K., Jones, M.D., Morrissey, M., Deeds, J., et al. (2007). Contribution of polycomb homologues Bmi-1 and Mel-18 to medulloblastoma pathogenesis. Mol. Cell. Biol. 27, 4968–4979.10.1128/MCB.02244-06Suche in Google Scholar PubMed PubMed Central

Xie, X., Piao, L., Cavey, G.S., Old, M., Teknos, T.N., Mapp, A.K., and Pan, Q. (2014). Phosphorylation of Nanog is essential to regulate Bmi1 and promote tumorigenesis. Oncogene 33, 2040–2052.10.1038/onc.2013.173Suche in Google Scholar PubMed PubMed Central

Yamaguchi, S., Kurimoto, K., Yabuta, Y., Sasaki, H., Nakatsuji, N., Saitou, M., and Tada, T. (2009). Conditional knockdown of Nanog induces apoptotic cell death in mouse migrating primordial germ cells. Development 136, 4011–4020.10.1242/dev.041160Suche in Google Scholar PubMed

Yu, J., Vodyanik, M.A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J.L., Tian, S., Nie, J., Jonsdottir, G.A., Ruotti, V., Stewart, R., et al. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920.10.1126/science.1151526Suche in Google Scholar PubMed


Supplemental Material:

The online version of this article (DOI: 10.1515/hsz-2015-0255) offers supplementary material, available to authorized users.


Received: 2015-9-24
Accepted: 2015-12-18
Published Online: 2016-1-4
Published in Print: 2016-3-1

©2016 by De Gruyter

Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/hsz-2015-0255/pdf
Button zum nach oben scrollen