Abstract
Progesterone and allopregnanolone have crucial and different roles in brain development, function and recovery after injury. Pregnancy is characterized by an increased synthesis of progesterone and its neuro-active metabolites by the placenta, maternal and fetal brain. This supports the critical role of these steroids in maternal brain adaptation during pregnancy and development of the fetal brain. Moreover, allopregnanolone may play a brain-protective role during complications of pregnancy, complications of pregnancy, such as preterm delivery or intrauterine growth restriction (IUGR), by reducing the impact of hypoxia and excitotoxic brain damage or impairment myelination. Behavioral consequences of altered progesterone/allopregnanolone fetal brain programming have also been hypothesized, although further evidence is needed. New potential applications of allopregnanolone as a treatment strategy have also been proposed, addressing unmet clinical needs in perinatal care.
References
1. Schumacher M, Guennoun R, Ghoumari A, Massaad C, Robert F, El-Etr M, Akwa Y, Rajkowski K, Baulieu E-E. Novel perspectives for progesterone in hormone replacement therapy, with special reference to the nervous system. Endocr Rev 2007;28:387–439.10.1210/er.2006-0050Suche in Google Scholar
2. Hirst JJ, Kelleher MA, Walker DW, Palliser HK. Neuroactive steroids in pregnancy: key regulatory and protective roles in the foetal brain. J Steroid Biochem Mol Biol 2014;139:144–53.10.1016/j.jsbmb.2013.04.002Suche in Google Scholar
3. Mani S. Progestins receptor subtypes in the brain: the known and the unknown. Endocrinology 2008;149:2750–6.10.1210/en.2008-0097Suche in Google Scholar
4. Tsai M-J, O’Malley BW. Molecular mechanisms of action of steroid/thyroid receptor superfamily members. Ann Rev Biochem 1994;63:451–86.10.1146/annurev.bi.63.070194.002315Suche in Google Scholar
5. Kastner P, Krust A, Turcotte B, Stropp U, Tora L, Gronemeyer H, Chambon P. Two dinstinct estrogen-regulated promoters generate transcripts encoding the two functionally different human progesterone receptors forms A and B. EMBO J 1990;9:1603–14.10.1002/j.1460-2075.1990.tb08280.xSuche in Google Scholar
6. Takimoto GS, Tung L, Abdel H, Abel MG, Sartorius CA, Richer JK, Jacobsen BM, Bain DL, Horwitz KB. Functional properties of the N-terminal region of progesterone receptors and their mechanistic relationship to structure. J Steroid Biochem Mol Biol 2003;85:209–19.10.1016/S0960-0760(03)00197-3Suche in Google Scholar
7. Dijkema R, Schoonen WG, Teuwen R, van der Struik E, de Ries RJ, van der Kar BA, Olijve W. Human progesterone receptor A and B isoforms in CHO cells. I. Stable transfection of receptor and receptor-responsive reporter genes: transcription modulation by (anti)progestagens. J Steroid Biochem Mol Biol 1998;64:147–56.10.1016/S0960-0760(97)00160-XSuche in Google Scholar
8. Hovland AR, Powell RL, Takimoto GS, Tung L, Horwitz KB. An N-terminal inhibitory function, IF, suppresses transcription by the A-isoform but not the B-isoform of human progesterone receptors. J Biol Chem 1998;273:5455–60.10.1074/jbc.273.10.5455Suche in Google Scholar PubMed
9. Shyamala G, Yang X, Silberstein G, Barcellos H, Dale E. Transgenic mice carrying an imbalance in the native ratio of A to B forms of progesterone receptor exhibit developmental abnormalities in mammary glands. Proc Natl Acad Sci USA 1998;95:696–701.10.1073/pnas.95.2.696Suche in Google Scholar PubMed PubMed Central
10. Shyamala G, Yang X, Cardiff RD, Dale E. Impact of progesterone receptor on cell-fate decisions during mammary gland development. Proc Natl Acad Sci USA 2000;97:3044–9.10.1073/pnas.97.7.3044Suche in Google Scholar PubMed PubMed Central
11. Wei LL, Gonzales-Aller C, Wood WM, Miller LA, Horwitz KB. 5′-heterogeneity in human progesterone receptor transcripts predicts a new amino-terminal truncated C-receptor and unique A-receptor messages. Ml Endocrinol 1990;4:1833–40.10.1210/mend-4-12-1833Suche in Google Scholar
12. Wei LL, Hawkins P, Baker C, Norris B, Sheridan PL, Quinn PG. An amino-terminal truncated progesterone receptor isoform, PRc, enhances progestin-induced transcriptional activity. Mol Endocrinol 1996;10:1379–87.10.1210/mend.10.11.8923464Suche in Google Scholar
13. Camacho-Arroyo I, Perez-Palacios G, Pasapera AM, Cerbon MA. Intracellular progesterone receptors are differentially regulated by sex steroid hormones in the hypothalamus and the cerebral cortex of the rabbit. J Steroid Biochem Mol Biol 1994;50:299–303.10.1016/0960-0760(94)90135-XSuche in Google Scholar
14. Guerra-Araiza C, Coyoy-Salgado A, Camacho-Arroyo I. Sex differences in the regulation of progesterone receptor isoforms expression in the rat brain. Brain Res Bull 2002;59:105–9.10.1016/S0361-9230(02)00845-6Suche in Google Scholar
15. Inoue T, Akahira JI, Takeyama J, Suzuki T, Darnel AD, Kaneko C, Kurokawa Y, Satomi S, Sasano H. Spatial and topological distribution of progesterone receptor A and B isoforms during human development. Mol Cell Endocrinol 2001;182:83–9.10.1016/S0303-7207(01)00549-4Suche in Google Scholar
16. Pluchino N, Luisi M, Lenzi E, Centofanti M, Begliuomini S, Freschi L, Ninni F, Genazzani AR. Progesterone and progestins: effects on brain, allopregnanolone and β-endorphin. J Steroid Biochem Mol Biol 2006;102:205–13.10.1016/j.jsbmb.2006.09.023Suche in Google Scholar
17. Camacho-Arroyo I, Guerra-Araiza C, Cerbon MA. Progesterone receptor isoforms are differentially regulated by sex steroids in the rat forebrain. Neuroreport 1998;9:3993–6.10.1097/00001756-199812210-00001Suche in Google Scholar
18. Guerra-Araiza C, Cerbon MA, Morimoto S, Camacho-Arroyo I. sex differences in the regulation of progesterone receptor isoforms expression in the rat brain during the estrous cycle. Life Sci 2000;66:1743–52.10.1016/S0024-3205(00)00497-5Suche in Google Scholar
19. Bethea CL, Widmann AA. Differential expression of progestins receptor isoforms in the hypothalamus, pituitary and endometrium of rhesus macaques. Endocrinology 1998;139:677–87.10.1210/endo.139.2.5752Suche in Google Scholar PubMed
20. Wu Y, Strawn E, Basir Z, Halverson G, Guo SW. Promoter hypermethylation of progesterone receptor isoform B (PR-B) in endometriosis. Epigenetics 2006;1:106–11.10.4161/epi.1.2.2766Suche in Google Scholar PubMed
21. Trotter A, Bokelmann B, Sorgo W, Bechinger-Kornhuber D, Heinemann H, Schmücker G, Oesterle M, Köhntop B, Brisch KH, Pohlandt F. Follow-up examination at the age of 15 months of extremely preterm infants after postnatal estradiol and progesterone replacement. J Clin Endocrinol Metab 2001;86:601–3.10.1210/jcem.86.2.7176Suche in Google Scholar PubMed
22. Krebs CJ, Jarvis ED, Chan J, Lydon JP, Ogawa S, Pfaff DW. A membrane-associated progesterone-binding protein, 25-Dx, is regulated by progesterone in brain regions involved in female reproductive behavior. Proc Natl Acad Sci USA 2000;97:12816–21.10.1073/pnas.97.23.12816Suche in Google Scholar
23. Labombarda F, Gonzalez SL, Deniselle MC, Vinson GP, Schumacher M, De Nicola AF, Guennoun R. Effects of injury and progesterone treatment on progesterone receptor and progesterone binding protein 25-Dx expression in the rat spinal cord. J Neurochem 2003;87:902–13.10.1046/j.1471-4159.2003.02055.xSuche in Google Scholar
24. Phan VL, Miyamoto Y, Nabeshima T, Maurice T. Age-related expression of 1 receptors and antidepressant efficacy of a selective agonist in the senescence-accelerated (SAM) mouse. J Neurosci Res 2005;79:561–72.10.1002/jnr.20390Suche in Google Scholar
25. Monnet FP, Maurice T. The 1 protein as a target for the non-genomic effects of neuro(active)steroids: molecular, physiological, and behavioral aspects. J Pharmacol Sci 2006;100:93–118.10.1254/jphs.CR0050032Suche in Google Scholar
26. Monnet FP, Mahé V, Robel P, Baulieu EE. Neurosteroids, via receptors, modulate the (3H)norepinephrine release evoked by N-methyl-D-aspartate in the rat hippocampus. Proc Natl Acad Sci USA 1995;92:3774–8.10.1073/pnas.92.9.3774Suche in Google Scholar
27. Debonnel G, Bergeron R, Monnet FP, de Montigny C. Differential effects of ligands on the N-methyl-D-aspartate response in the CA1 and CA3 regions of the dorsal hippocampus: effect of mossy fiber lesioning. Neuroscience 1996;71:977–87.10.1016/0306-4522(96)80001-7Suche in Google Scholar
28. Lena C, Changeux JP. Allosteric modulations of the nicotinic acetyl-choline receptor. Trends Neurosci 1993;16:181–6.10.1016/0166-2236(93)90150-KSuche in Google Scholar
29. Valera S, Ballivet M, Bertrand D. Progesterone modulates a neuronal nicotinic acetylcholine receptor Proc Natl Acad Sci USA 1992;89:9949–53.10.1073/pnas.89.20.9949Suche in Google Scholar PubMed PubMed Central
30. Denner LA, Weigel NL, Maxwell BL, Schrader WT, O’Malley BW. Regulation of progesterone receptor-mediated transcription by phosphorylation, Science 1990;250:1740–3.10.1126/science.2176746Suche in Google Scholar PubMed
31. Ukena K, Kohchi C, Tsutsui K. Expression and activity of 3beta-hydroxysteroid dehydrogenase/delta5-delta4-isomerase in the rat Purkinje neuron during neonatal life. Endocrinology 1999;140:805–13.10.1210/endo.140.2.6516Suche in Google Scholar PubMed
32. Ghoumari AM, Baulieu EE, Schumacher M. Progesterone increases oligodendroglial cell proliferation in rat cerebellar slice cultures. Neuroscience 2005;135:47–58.10.1016/j.neuroscience.2005.05.023Suche in Google Scholar
33. Mellon SH. Neurosteroid regulation of central nervous system development. Pharmacol Ther 2007;116:107–24.10.1016/j.pharmthera.2007.04.011Suche in Google Scholar
34. Guennoun R, Labombarda F, Gonzalez Deniselle MC, Liere P, De Nicola AF, Schumacher M. Progesterone and allopregnanolone in the central nervous system: response to injury and implication for neuroprotection. J Steroid Biochem Mol Biol 2015;146:48–61.10.1016/j.jsbmb.2014.09.001Suche in Google Scholar
35. Melcangi RC, Giatti S, Calabrese D, Pesaresi M, Cermenati G, Mitro N, Viviani B, Garcia-Segura LM, Caruso D. Levels and actions of progesterone and its metabolites in the nervous system during physiological and pathological conditions. Prog Neurobiol 2014;113:56–69.10.1016/j.pneurobio.2013.07.006Suche in Google Scholar
36. Brunton PJ, Russell JA, Hirst JJ. Allopregnanolone in the brain: protecting pregnancy and birth outcomes. Prog Neurobiol 2014;113:106–36.10.1016/j.pneurobio.2013.08.005Suche in Google Scholar
37. Pluchino N, Santoro A, Casarosa E, Wenger JM, Genazzani AD, Petignat P, Genazzani AR. Advances in neurosteroids: role in clinical practice. Climacteric 2013;16(Suppl 1):8–17.10.3109/13697137.2013.809647Suche in Google Scholar
38. Hill M, Pašková A, Kančeva R, Velíková M, Kubátová J, Kancheva L, Adamcová K, Mikešová M, Žižka Z, Koucký M, Šarapatková H, Kačer V, Matucha P, Meloun M, Pařízek A. Steroid profiling in pregnancy: a focus on the human fetus. J Steroid Biochem Mol Biol 2014;139:201–22.10.1016/j.jsbmb.2013.03.008Suche in Google Scholar
39. Nguyen PN, Billiards SS, Walker DW, Hirst JJ. Changes in 5alpha-pregnane steroids and neurosteroidogenic enzyme expression in fetal sheep with umbilicoplacental embolization. Pediatr Res 2003;54:840–7.10.1203/01.PDR.0000088066.47755.36Suche in Google Scholar
40. Crossley KJ, Nitsos I, Walker DW, Lawrence AJ, Beart PM, Hirst JJ. Steroid-sensitive GABAA receptors in the fetal sheep brain. Neuropharmacology 2003;45:461–72.10.1016/S0028-3908(03)00196-5Suche in Google Scholar
41. Pluchino N, Santoro AN, Casarosa E, Giannini A, Genazzani A, Russo M, Russo N, Petignat P, Genazzani AR. Effect of estetrol administration on brain and serum allopregnanolone in intact and ovariectomized rats. J Steroid Biochem Mol Biol 2014;143:285–90.10.1016/j.jsbmb.2014.04.011Suche in Google Scholar PubMed
42. Yawno T, Yan EB, Walker DW, Hirst JJ. Inhibition of neurosteroid synthesis increases asphyxia-induced brain injury in the late gestation fetal sheep. Neuroscience 2007;146:1726–33.10.1016/j.neuroscience.2007.03.023Suche in Google Scholar PubMed
©2016 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Editorial Preface
- Preface to special issue on “Hormones in normal and pathological pregnancies”
- Review Articles
- Reproductive history and breast cancer prevention
- The formation and transformation of hormones in maternal, placental and fetal compartments: biological implications
- The fetal brain: role of progesterone and allopregnanolone
- Progesterone in normal and pathological pregnancy
Artikel in diesem Heft
- Frontmatter
- Editorial Preface
- Preface to special issue on “Hormones in normal and pathological pregnancies”
- Review Articles
- Reproductive history and breast cancer prevention
- The formation and transformation of hormones in maternal, placental and fetal compartments: biological implications
- The fetal brain: role of progesterone and allopregnanolone
- Progesterone in normal and pathological pregnancy