Startseite Enzymatic intracrine regulation of white adipose tissue
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Enzymatic intracrine regulation of white adipose tissue

  • David DiSilvestro , Jennifer Petrosino , Ayat Aldoori , Emiliano Melgar-Bermudez , Alexandra Wells und Ouliana Ziouzenkova EMAIL logo
Veröffentlicht/Copyright: 3. Juli 2014
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Abdominal fat formation has become a permanent risk factor for metabolic syndrome and various cancers in one-third of the world’s population of obese and even lean patients. Formation of abdominal fat involves additional mechanisms beyond an imbalance in energy intake and expenditure, which explains systemic obesity. In this review, we briefly summarized autonomous regulatory circuits that locally produce hormones from inactive precursors or nutrients for intra-/auto-/paracrine signaling in white adipose depots. Enzymatic pathways activating steroid and thyroid hormones in adipose depots were compared with enzymatic production of retinoic acid from vitamin A. We discussed the role of intracrine circuits in fat-depot functions and strategies to reduce abdominal adiposity through thermogenic adipocytes with interrupted generation of retinoic acid.


Corresponding author: Ouliana Ziouzenkova, PhD, 1787 Neil Avenue, 331A Campbell Hall, Columbus, OH 43210, USA, Phone: +614 292 5034, Fax: +614 292 8880, E-mail: ; and Department of Human Sciences, The Ohio State University, Columbus, OH, USA

Acknowledgments

This research was supported by Egg Nutrition Center (American Egg Board); Novo Nordisk Science forum Early Exploration Award; the National Institutes of Health R21 OD017244–01; Food Innovation Center, Office for International Affairs and Center for Advanced Functional Foods Research and Entrepreneurship at OSU; and Daskal Foundation. The project described was supported by Award Number Grant UL1TR000090 from the National Center for Advancing Translational Sciences and the Cancer Center Support Grant (CA016058). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Center for Research Resources or the National Institutes of Health.

Conflicts of interest statement:

The authors declare no conflict of interest.

References

1. National Cholesterol Education Program Expert Panel on Detection E, Treatment of High Blood Cholesterol In A. Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation 2002;106:3143–421.10.1161/circ.106.25.3143Suche in Google Scholar

2. Moreno LA, Bel-Serrat S, Santaliestra-Pasias AM, Rodriguez G. Obesity prevention in children. World Rev Nutr Diet 2013;106:119–26.10.1159/000342560Suche in Google Scholar PubMed

3. Canale MP, Manca Di Villahermosa S, Martino G, Rovella V, Noce A, De Lorenzo A, Di Daniele N. Obesity-related metabolic syndrome: mechanisms of sympathetic overactivity. Int J Endocrinol 2013;2013:865965.10.1155/2013/865965Suche in Google Scholar PubMed PubMed Central

4. Schwenk RW, Vogel H, Schurmann A. Genetic and epigenetic control of metabolic health. Mol Metab 2013;2:337–47.10.1016/j.molmet.2013.09.002Suche in Google Scholar PubMed PubMed Central

5. Tchoukalova YD, Votruba SB, Tchkonia T, Giorgadze N, Kirkland JL, Jensen MD. Regional differences in cellular mechanisms of adipose tissue gain with overfeeding. Proc Natl Acad Sci USA 2010;107:18226–31.10.1073/pnas.1005259107Suche in Google Scholar PubMed PubMed Central

6. Tran TT, Kahn CR. Transplantation of adipose tissue and stem cells: role in metabolism and disease. Nat Rev Endocrinol 2010;6:195–213.10.1038/nrendo.2010.20Suche in Google Scholar PubMed PubMed Central

7. Kershaw EE, Morton NM, Dhillon H, Ramage L, Seckl JR, Flier JS. Adipocyte-specific glucocorticoid inactivation protects against diet-induced obesity. Diabetes 2005;54:1023–31.10.2337/diabetes.54.4.1023Suche in Google Scholar PubMed PubMed Central

8. Arrojo ED, Fonseca TL, Werneck-De-Castro JP, Bianco AC. Role of the type 2 iodothyronine deiodinase (D2) in the control of thyroid hormone signaling. Biochim Biophys Acta 2013;1830:3956–64.10.1016/j.bbagen.2012.08.019Suche in Google Scholar PubMed PubMed Central

9. Yasmeen R, Reichert B, Deiuliis J, Yang F, Lynch A, Meyers J, Sharlach M, Shin S, Volz KS, Green KB, Lee K, Alder H, Duester G, Zechner R, Rajagopalan S, Ziouzenkova O. Autocrine function of aldehyde dehydrogenase 1 as a determinant of diet- and sex-specific differences in visceral adiposity. Diabetes 2013;62:124–36.10.2337/db11-1779Suche in Google Scholar PubMed PubMed Central

10. Jeyakumar Sm YR, Reichert B, Ziouzenkova O. Metabolism of vitamin A in white adipose tissue and obesity. In: Sommerburg SW, Kraemer K, editors. Carotenoids and vitamin A in translational medicine, USA: CRC Press; 2013:23–54.10.1201/b14569-4Suche in Google Scholar

11. Phillips LK, Prins JB. The link between abdominal obesity and the metabolic syndrome. Curr Hypertens Rep 2008;10:156–64.10.1007/s11906-008-0029-7Suche in Google Scholar PubMed

12. Seale P, Kajimura S, Spiegelman BM. Transcriptional control of brown adipocyte development and physiological function – of mice and men. Genes Dev 2009;23:788–97.10.1101/gad.1779209Suche in Google Scholar PubMed PubMed Central

13. Ponrartana S, Patil S, Aggabao PC, Pavlova Z, Devaskar SU, Gilsanz V. Brown adipose tissue in the buccal fat pad during infancy. PLoS One 2014;9:e89533.10.1371/journal.pone.0089533Suche in Google Scholar PubMed PubMed Central

14. Townsend KL, Tseng YH. Brown fat fuel utilization and thermogenesis. Trends Endocrinol Metab 2014;25:168–77.10.1016/j.tem.2013.12.004Suche in Google Scholar PubMed PubMed Central

15. Tupone D, Madden CJ, Morrison SF. Autonomic regulation of brown adipose tissue thermogenesis in health and disease: potential clinical applications for altering BAT thermogenesis. Front Neurosci 2014;8:14.10.3389/fnins.2014.00014Suche in Google Scholar PubMed PubMed Central

16. Sakurai T, Ogasawara J, Kizaki T, Sato S, Ishibashi Y, Takahashi M, Kobayashi O, Oh-Ishi S, Nagasawa J, Takahashi K, Ishida H, Izawa T, Ohno H. The effects of exercise training on obesity-induced dysregulated expression of adipokines in white adipose tissue. Int J Endocrinol 2013;2013:801743.10.1155/2013/801743Suche in Google Scholar PubMed PubMed Central

17. Gealekman O, Guseva N, Hartigan C, Apotheker S, Gorgoglione M, Gurav K, Tran KV, Straubhaar J, Nicoloro S, Czech MP, Thompson M, Perugini RA, Corvera S. Depot-specific differences and insufficient subcutaneous adipose tissue angiogenesis in human obesity. Circulation 2011;123:186–94.10.1161/CIRCULATIONAHA.110.970145Suche in Google Scholar PubMed PubMed Central

18. Makki K, Froguel P, Wolowczuk I. Adipose Tissue in Obesity-Related Inflammation and Insulin Resistance: Cells, Cytokines, and Chemokines. ISRN Inflamm 2013;2013:139239.10.1155/2013/139239Suche in Google Scholar PubMed PubMed Central

19. Cannon B, Nedergaard J. Brown adipose tissue: function and physiological significance. Physiol Rev 2004;84:277–359.10.1152/physrev.00015.2003Suche in Google Scholar PubMed

20. Wu J, Bostrom P, Sparks LM, Ye L, Choi JH, Giang AH, Khandekar M, Virtanen KA, Nuutila P, Schaart G, Huang K, Tu H, Van Marken Lichtenbelt WD, Hoeks J, Enerback S, Schrauwen P, Spiegelman BM. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 2012;150:366–76.10.1016/j.cell.2012.05.016Suche in Google Scholar PubMed PubMed Central

21. Saito M. Human brown adipose tissue: regulation and anti-obesity potential (Review). Endocr J 2014;61:409–16.10.1507/endocrj.EJ13-0527Suche in Google Scholar

22. Feldmann HM, Golozoubova V, Cannon B, Nedergaard J. UCP1 ablation induces obesity and abolishes diet-induced thermogenesis in mice exempt from thermal stress by living at thermoneutrality. Cell Metab 2009;9:203–9.10.1016/j.cmet.2008.12.014Suche in Google Scholar PubMed

23. Yang F, Zhang X, Maiseyeu A, Mihai G, Yasmeen R, Disilvestro D, Maurya SK, Periasamy M, Bergdall KV, Duester G, Sen CK, Roy S, Lee LJ, Rajagopalan S, Ziouzenkova O. The prolonged survival of fibroblasts with forced lipid catabolism in visceral fat following encapsulation in alginate-poly-L-lysine. Biomaterials 2012;33:5638–49.10.1016/j.biomaterials.2012.04.035Suche in Google Scholar PubMed PubMed Central

24. Bostrom P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC, Rasbach KA, Bostrom EA, Choi JH, Long JZ, Kajimura S, Zingaretti MC, Vind BF, Tu H, Cinti S, Hojlund K, Gygi SP, Spiegelman BM. A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 2012;481:463–8.10.1038/nature10777Suche in Google Scholar PubMed PubMed Central

25. Wallukat G. The beta-adrenergic receptors. Herz 2002;27: 683–90.10.1007/s00059-002-2434-zSuche in Google Scholar PubMed

26. Frey SK, Vogel S. Vitamin A metabolism and adipose tissue biology. Nutrients 2011;3:27–39.10.3390/nu3010027Suche in Google Scholar PubMed PubMed Central

27. Cooper MS, Stewart PM. 11Beta-hydroxysteroid dehydrogenase type 1 and its role in the hypothalamus-pituitary-adrenal axis, metabolic syndrome, and inflammation. J Clin Endocrinol Metab 2009;94:4645–54.10.1210/jc.2009-1412Suche in Google Scholar PubMed

28. Saracino MA, Iacono C, Somaini L, Gerra G, Ghedini N, Raggi MA. Multi-matrix assay of cortisol, cortisone and corticosterone using a combined MEPS-HPLC procedure. J Pharm Biomed Anal 2014;88:643–8.10.1016/j.jpba.2013.10.008Suche in Google Scholar PubMed

29. Yang J, Young MJ. The mineralocorticoid receptor and its coregulators. J Mol Endocrinol 2009;43:53–64.10.1677/JME-09-0031Suche in Google Scholar PubMed

30. Komanicky P, Spark RF, Melby JC. Treatment of Cushing’s syndrome with trilostane (WIN 24,540), an inhibitor of adrenal steroid biosynthesis. J Clin Endocrinol Metab 1978;47:1042–51.10.1210/jcem-47-5-1042Suche in Google Scholar PubMed

31. Mayo-Smith W, Hayes CW, Biller BM, Klibanski A, Rosenthal H, Rosenthal DI. Body fat distribution measured with CT: correlations in healthy subjects, patients with anorexia nervosa, and patients with Cushing syndrome. Radiology 1989;170:515–8.10.1148/radiology.170.2.2911678Suche in Google Scholar

32. Peeke PM, Chrousos GP. Hypercortisolism and obesity. Ann NY Acad Sci 1995;771:665–76.10.1111/j.1749-6632.1995.tb44719.xSuche in Google Scholar

33. Lee MJ, Pramyothin P, Karastergiou K, Fried SK. Deconstructing the roles of glucocorticoids in adipose tissue biology and the development of central obesity. Biochim Biophys Acta 2014;1842:473–81.10.1016/j.bbadis.2013.05.029Suche in Google Scholar

34. Ljung T, Andersson B, Bengtsson BA, Bjorntorp P, Marin P. Inhibition of cortisol secretion by dexamethasone in relation to body fat distribution: a dose-response study. Obes Res 1996;4:277–82.10.1002/j.1550-8528.1996.tb00546.xSuche in Google Scholar

35. Bjorntorp P, Rosmond R. Obesity and cortisol. Nutrition 2000;16:924–36.10.1016/S0899-9007(00)00422-6Suche in Google Scholar

36. Mlynaryk P, Gillies RR, Murphy B, Pattee CJ. Cortisol production rates in obesity. J Clin Endocrinol Metab 1962;22:587–91.10.1210/jcem-22-6-587Suche in Google Scholar

37. Strain GW, Zumoff B, Kream J, Strain JJ, Levin J, Fukushima D. Sex difference in the influence of obesity on the 24 hr mean plasma concentration of cortisol. Metabolism 1982;31:209–12.10.1016/0026-0495(82)90054-3Suche in Google Scholar

38. Duclos M, Corcuff JB, Etcheverry N, Rashedi M, Tabarin A, Roger P. Abdominal obesity increases overnight cortisol excretion. J Endocrinol Invest 1999;22:465–71.10.1007/BF03343591Suche in Google Scholar PubMed

39. Mussig K, Remer T, Maser-Gluth C. Brief review: glucocorticoid excretion in obesity. J Steroid Biochem Mol Biol 2010;121: 589–93.10.1016/j.jsbmb.2010.01.008Suche in Google Scholar PubMed

40. Masuzaki H, Paterson J, Shinyama H, Morton NM, Mullins JJ, Seckl JR, Flier JS. A transgenic model of visceral obesity and the metabolic syndrome. Science 2001;294:2166–70.10.1126/science.1066285Suche in Google Scholar PubMed

41. Masuzaki H, Yamamoto H, Kenyon CJ, Elmquist JK, Morton NM, Paterson JM, Shinyama H, Sharp MG, Fleming S, Mullins JJ, Seckl JR, Flier JS. Transgenic amplification of glucocorticoid action in adipose tissue causes high blood pressure in mice. J Clin Invest 2003;112:83–90.10.1172/JCI17845Suche in Google Scholar PubMed PubMed Central

42. Liu J, Kong X, Wang L, Qi H, Di W, Zhang X, Wu L, Chen X, Yu J, Zha J, Lv S, Zhang A, Cheng P, Hu M, Li Y, Bi J, Li Y, Hu F, Zhong Y, Xu Y, Ding G. Essential roles of 11beta-HSD1 in regulating brown adipocyte function. J Mol Endocrinol 2013;50:103–13.10.1530/JME-12-0099Suche in Google Scholar PubMed

43. De Sousa Peixoto RA, Turban S, Battle JH, Chapman KE, Seckl JR, Morton NM. Preadipocyte 11beta-hydroxysteroid dehydrogenase type 1 is a keto-reductase and contributes to diet-induced visceral obesity in vivo. Endocrinology 2008;149:1861–8.10.1210/en.2007-1028Suche in Google Scholar PubMed

44. Lee MJ, Fried SK. The glucocorticoid receptor, not the mineralocorticoid receptor, plays the dominant role in adipogenesis and adipokine production in human adipocytes. Int J Obes (Lond) 2014.10.1038/ijo.2014.6Suche in Google Scholar PubMed PubMed Central

45. Fu M, Sun T, Bookout AL, Downes M, Yu RT, Evans RM, Mangelsdorf DJ. A Nuclear Receptor Atlas: 3T3-L1 adipogenesis. Mol Endocrinol 2005;19:2437–50.10.1210/me.2004-0539Suche in Google Scholar PubMed

46. Tomlinson JW, Sinha B, Bujalska I, Hewison M, Stewart PM. Expression of 11beta-hydroxysteroid dehydrogenase type 1 in adipose tissue is not increased in human obesity. J Clin Endocrinol Metab 2002;87:5630–5.10.1210/jc.2002-020687Suche in Google Scholar PubMed

47. Michalaki M, Kyriazopoulou V, Antonacopoulou A, Koika V, Nikolaou M, Tsoukas A, Kalfarentzos F, Vagenakis AG, Voukelatou G, Papavassiliou AG. The expression of omental 11beta-HSD1 is not increased in severely obese women with metabolic syndrome. Obes Facts 2012;5:104–11.10.1159/000336755Suche in Google Scholar PubMed

48. Desbriere R, Vuaroqueaux V, Achard V, Boullu-Ciocca S, Labuhn M, Dutour A, Grino M. 11beta-hydroxysteroid dehydrogenase type 1 mRNA is increased in both visceral and subcutaneous adipose tissue of obese patients. Obesity (Silver Spring) 2006;14:794–8.10.1038/oby.2006.92Suche in Google Scholar PubMed

49. Mariniello B, Ronconi V, Rilli S, Bernante P, Boscaro M, Mantero F, Giacchetti G. Adipose tissue 11beta-hydroxysteroid dehydrogenase type 1 expression in obesity and Cushing’s syndrome. Eur J Endocrinol 2006;155:435–41.10.1530/eje.1.02228Suche in Google Scholar PubMed

50. Michailidou Z, Jensen MD, Dumesic DA, Chapman KE, Seckl JR, Walker BR, Morton NM. Omental 11beta-hydroxysteroid dehydrogenase 1 correlates with fat cell size independently of obesity. Obesity (Silver Spring) 2007;15:1155–63.10.1038/oby.2007.618Suche in Google Scholar PubMed

51. Rask E, Olsson T, Soderberg S, Andrew R, Livingstone DE, Johnson O, Walker BR. Tissue-specific dysregulation of cortisol metabolism in human obesity. J Clin Endocrinol Metab 2001;86:1418–21.10.1210/jcem.86.3.7453Suche in Google Scholar PubMed

52. Stimson RH, Andersson J, Andrew R, Redhead DN, Karpe F, Hayes PC, Olsson T, Walker BR. Cortisol release from adipose tissue by 11beta-hydroxysteroid dehydrogenase type 1 in humans. Diabetes 2009;58:46–53.10.2337/db08-0969Suche in Google Scholar PubMed PubMed Central

53. Andersson T, Simonyte K, Andrew R, Strand M, Buren J, Walker BR, Mattsson C, Olsson T. Tissue-specific increases in 11beta-hydroxysteroid dehydrogenase type 1 in normal weight postmenopausal women. PLoS One 2009;4:e8475.10.1371/journal.pone.0008475Suche in Google Scholar PubMed PubMed Central

54. Veilleux A, Laberge PY, Morency J, Noel S, Luu-The V, Tchernof A. Expression of genes related to glucocorticoid action in human subcutaneous and omental adipose tissue. J Steroid Biochem Mol Biol 2010;122:28–34.10.1016/j.jsbmb.2010.02.024Suche in Google Scholar PubMed

55. Rask E, Simonyte K, Lonn L, Axelson M. Cortisol metabolism after weight loss: associations with 11 beta-HSD type 1 and markers of obesity in women. Clin Endocrinol (Oxf) 2013;78:700–5.10.1111/j.1365-2265.2012.04333.xSuche in Google Scholar PubMed

56. Lee JH, Gao Z, Ye J. Regulation of 11beta-HSD1 expression during adipose tissue expansion by hypoxia through different activities of NF-kappaB and HIF-1alpha. Am J Physiol Endocrinol Metab 2013;304:E1035–41.10.1152/ajpendo.00029.2013Suche in Google Scholar PubMed PubMed Central

57. Milagro FI, Campion J, Martinez JA. 11-Beta hydroxysteroid dehydrogenase type 2 expression in white adipose tissue is strongly correlated with adiposity. J Steroid Biochem Mol Biol 2007;104:81–4.10.1016/j.jsbmb.2006.10.006Suche in Google Scholar PubMed

58. Pilo A, Iervasi G, Vitek F, Ferdeghini M, Cazzuola F, Bianchi R. Thyroidal and peripheral production of 3,5,3′-triiodothyronine in humans by multicompartmental analysis. Am J Physiol 1990;258:E715–26.10.1152/ajpendo.1990.258.4.E715Suche in Google Scholar PubMed

59. Senese R, Cioffi F, De Lange P, Goglia F, Lanni A. Thyroid: biological actions of ‘non-classical’ thyroid hormones. J Endocrinol 2014;221:R1–R12.10.1530/JOE-13-0573Suche in Google Scholar PubMed

60. Powell KA, Mitchell AM, Manley SW, Mortimer RH, Mortimer RH. Different transporters for tri-iodothyronine (T(3)) and thyroxine (T(4)) in the human choriocarcinoma cell line, JAR. J Endocrinol 2000;167:487–92.10.1677/joe.0.1670487Suche in Google Scholar PubMed

61. Dumitrescu AM, Fu J, Dempsey MA, Refetoff S. MCT8-Specific Thyroid Hormone Cell-Membrane Transporter Deficiency. In: Pagon RA, Adam MP, Ardinger HH, Bird TG, Dolan CR, Fong C-T, Smith RJH, Stephens K, eds. GeneReviews(R), Seattle, WA: University of Washington, Seattle, 1993.Suche in Google Scholar

62. Lin HY, Davis FB, Gordinier JK, Martino LJ, Davis PJ. Thyroid hormone induces activation of mitogen-activated protein kinase in cultured cells. Am J Physiol 1999;276:C1014–24.10.1152/ajpcell.1999.276.5.C1014Suche in Google Scholar

63. Wiechens B, Eckardt C. Visual changes after silicone oil injection. Fortschr Ophthalmol 1991;88:608–12.Suche in Google Scholar

64. Douyon L, Schteingart DE. Effect of obesity and starvation on thyroid hormone, growth hormone, and cortisol secretion. Endocrinol Metab Clin North Am 2002;31:173–89.10.1016/S0889-8529(01)00023-8Suche in Google Scholar

65. Flamant F, Baxter JD, Forrest D, Refetoff S, Samuels H, Scanlan TS, Vennstrom B, Samarut J. International Union of Pharmacology. LIX. The pharmacology and classification of the nuclear receptor superfamily: thyroid hormone receptors. Pharmacol Rev 2006;58:705–11.10.1124/pr.58.4.3Suche in Google Scholar

66. Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schutz G, Umesono K, Blumberg B, Kastner P, Mark M, Chambon P, Evans RM. The nuclear receptor superfamily: the second decade. Cell 1995;83:835–9.10.1016/0092-8674(95)90199-XSuche in Google Scholar

67. Kliewer SA, Umesono K, Mangelsdorf DJ, Evans RM. Retinoid X receptor interacts with nuclear receptors in retinoic acid, thyroid hormone and vitamin D3 signalling. Nature 1992;355:446–9.10.1038/355446a0Suche in Google Scholar PubMed PubMed Central

68. Ortega FJ, Moreno-Navarrete JM, Ribas V, Esteve E, Rodriguez-Hermosa JI, Ruiz B, Peral B, Ricart W, Zorzano A, Fernandez-Real JM. Subcutaneous fat shows higher thyroid hormone receptor-alpha1 gene expression than omental fat. Obesity (Silver Spring) 2009;17:2134–41.10.1038/oby.2009.110Suche in Google Scholar PubMed

69. Araki O, Ying H, Zhu XG, Willingham MC, Cheng SY. Distinct dysregulation of lipid metabolism by unliganded thyroid hormone receptor isoforms. Mol Endocrinol 2009;23:308–15.10.1210/me.2008-0311Suche in Google Scholar PubMed PubMed Central

70. Brent GA. Tissue-specific actions of thyroid hormone: insights from animal models. Rev Endocr Metab Disord 2000;1:27–33.10.1023/A:1010056202122Suche in Google Scholar

71. Nannipieri M, Cecchetti F, Anselmino M, Camastra S, Niccolini P, Lamacchia M, Rossi M, Iervasi G, Ferrannini E. Expression of thyrotropin and thyroid hormone receptors in adipose tissue of patients with morbid obesity and/or type 2 diabetes: effects of weight loss. Int J Obes (Lond) 2009;33:1001–6.10.1038/ijo.2009.140Suche in Google Scholar PubMed

72. Fernandez-Real JM, Corella D, Goumidi L, Mercader JM, Valdes S, Rojo Martinez G, Ortega F, Martinez-Larrad MT, Gomez-Zumaquero JM, Salas-Salvado J, Martinez Gonzalez MA, Covas MI, Botas P, Delgado E, Cottel D, Ferrieres J, Amouyel P, Ricart W, Ros E, Meirhaeghe A, Serrano-Rios M, Soriguer F, Estruch R. Thyroid hormone receptor alpha gene variants increase the risk of developing obesity and show gene-diet interactions. Int J Obes (Lond) 2013;37:1499–505.10.1038/ijo.2013.11Suche in Google Scholar PubMed

73. Ribeiro MO, Bianco SD, Kaneshige M, Schultz JJ, Cheng SY, Bianco AC, Brent GA. Expression of uncoupling protein 1 in mouse brown adipose tissue is thyroid hormone receptor-beta isoform specific and required for adaptive thermogenesis. Endocrinology 2010;151:432–40.10.1210/en.2009-0667Suche in Google Scholar PubMed PubMed Central

74. Dace A, Sarkissian G, Schneider L, Martin-El Yazidi C, Bonne J, Margotat A, Planells R, Torresani J. Transient expression of c-erbAbeta1 messenger ribonucleic acid and beta1 thyroid hormone receptor early in adipogenesis of Ob 17 cells. Endocrinology 1999;140:2983–90.10.1210/endo.140.7.6860Suche in Google Scholar PubMed

75. Williams GR. Cloning and characterization of two novel thyroid hormone receptor beta isoforms. Mol Cell Biol 2000;20: 8329–42.10.1128/MCB.20.22.8329-8342.2000Suche in Google Scholar PubMed PubMed Central

76. Wang CZ, Wei D, Guan MP, Xue YM. Triiodothyronine regulates distribution of thyroid hormone receptors by activating AMP-activated protein kinase in 3T3-L1 adipocytes and induces uncoupling protein-1 expression. Mol Cell Biochem 2014;393:247–54.10.1007/s11010-014-2067-6Suche in Google Scholar PubMed

77. Ribeiro MO, Carvalho SD, Schultz JJ, Chiellini G, Scanlan TS, Bianco AC, Brent GA. Thyroid hormone – sympathetic interaction and adaptive thermogenesis are thyroid hormone receptor isoform-specific. J Clin Invest 2001;108:97–105.10.1172/JCI200112584Suche in Google Scholar

78. Medina-Gomez G, Hernandez A, Calvo RM, Martin E, Obregon MJ. Potent thermogenic action of triiodothyroacetic acid in brown adipocytes. Cell Mol Life Sci 2003;60:1957–67.10.1007/s00018-003-3158-9Suche in Google Scholar PubMed

79. Moreno M, Silvestri E, De Matteis R, De Lange P, Lombardi A, Glinni D, Senese R, Cioffi F, Salzano AM, Scaloni A, Lanni A, Goglia F. 3,5-Diiodo-L-thyronine prevents high-fat-diet-induced insulin resistance in rat skeletal muscle through metabolic and structural adaptations. FASEB J 2011;25:3312–24.10.1096/fj.11-181982Suche in Google Scholar PubMed

80. Lanni A, Moreno M, Lombardi A, Goglia F. 3,5-Diiodo-L-thyronine and 3,5,3′-triiodo-L-thyronine both improve the cold tolerance of hypothyroid rats, but possibly via different mechanisms. Pflugers Arch 1998;436:407–14.10.1007/s004240050650Suche in Google Scholar PubMed

81. Orozco A, Navarrete-Ramirez P, Olvera A, Garcia GC. 3,5-Diiodothyronine (T2) is on a role. A new hormone in search of recognition. Gen Comp Endocrinol 2014.10.1016/j.ygcen.2014.02.014Suche in Google Scholar PubMed

82. Mangiullo R, Gnoni A, Damiano F, Siculella L, Zanotti F, Papa S, Gnoni GV. 3,5-diiodo-L-thyronine upregulates rat-liver mitochondrial F(o)F(1)-ATP synthase by GA-binding protein/nuclear respiratory factor-2. Biochim Biophys Acta 2010;1797:233–40.10.1016/j.bbabio.2009.10.009Suche in Google Scholar PubMed

83. Inada M, Nishikawa M. Thyroid hormone metabolism. Nihon Naibunpi Gakkai Zasshi 1993;69:9–15.10.1507/endocrine1927.69.1_9Suche in Google Scholar PubMed

84. Castillo M, Hall JA, Correa-Medina M, Ueta C, Kang HW, Cohen DE, Bianco AC. Disruption of thyroid hormone activation in type 2 deiodinase knockout mice causes obesity with glucose intolerance and liver steatosis only at thermoneutrality. Diabetes 2011;60:1082–9.10.2337/db10-0758Suche in Google Scholar PubMed PubMed Central

85. Fonseca TL, Werneck-De-Castro JP, Castillo M, Bocco BM, Fernandes GW, Mcaninch EA, Ignacio DL, Moises CC, Ferreira A, Gereben B, Bianco AC. Tissue-specific inactivation of type 2 deiodinase reveals multilevel control of Fatty Acid oxidation by thyroid hormone in the mouse. Diabetes 2014;63:1594–604.10.2337/db13-1768Suche in Google Scholar PubMed PubMed Central

86. St Germain DL, Galton VA, Hernandez A. Minireview: Defining the roles of the iodothyronine deiodinases: current concepts and challenges. Endocrinology 2009;150:1097–107.10.1210/en.2008-1588Suche in Google Scholar PubMed PubMed Central

87. Silva JE, Larsen PR. Potential of brown adipose tissue type II thyroxine 5′-deiodinase as a local and systemic source of triiodothyronine in rats. J Clin Invest 1985;76:2296–305.10.1172/JCI112239Suche in Google Scholar PubMed PubMed Central

88. Nelson LR, Bulun SE. Estrogen production and action. J Am Acad Dermatol 2001;45:S116–24.10.1067/mjd.2001.117432Suche in Google Scholar PubMed

89. Dahlman-Wright K, Cavailles V, Fuqua SA, Jordan VC, Katzenellenbogen JA, Korach KS, Maggi A, Muramatsu M, Parker MG, Gustafsson JA. International Union of Pharmacology. LXIV. Estrogen receptors. Pharmacol Rev 2006;58:773–81.10.1124/pr.58.4.8Suche in Google Scholar PubMed

90. Kuiper GG, Carlsson B, Grandien K, Enmark E, Haggblad J, Nilsson S, Gustafsson JA. Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta. Endocrinology 1997;138:863–70.10.1210/endo.138.3.4979Suche in Google Scholar PubMed

91. Margeat E, Poujol N, Boulahtouf A, Chen Y, Muller JD, Gratton E, Cavailles V, Royer CA. The human estrogen receptor alpha dimer binds a single SRC-1 coactivator molecule with an affinity dictated by agonist structure. J Mol Biol 2001;306:433–42.10.1006/jmbi.2000.4418Suche in Google Scholar PubMed

92. Siiteri PK. Adipose tissue as a source of hormones. Am J Clin Nutr 1987;45:277–82.10.1093/ajcn/45.1.277Suche in Google Scholar PubMed

93. Mahendroo MS, Mendelson CR, Simpson ER. Tissue-specific and hormonally controlled alternative promoters regulate aromatase cytochrome P450 gene expression in human adipose tissue. J Biol Chem 1993;268:19463–70.10.1016/S0021-9258(19)36538-XSuche in Google Scholar

94. Bulun SE, Chen D, Moy I, Brooks DC, Zhao H. Aromatase, breast cancer and obesity: a complex interaction. Trends Endocrinol Metab 2012;23:83–9.10.1016/j.tem.2011.10.003Suche in Google Scholar PubMed PubMed Central

95. Cleland WH, Mendelson CR, Simpson ER. Aromatase activity of membrane fractions of human adipose tissue stromal cells and adipocytes. Endocrinology 1983;113:2155–60.10.1210/endo-113-6-2155Suche in Google Scholar PubMed

96. Simpson ER, Ackerman GE, Smith ME, Mendelson CR. Estrogen formation in stromal cells of adipose tissue of women: induction by glucocorticosteroids. Proc Natl Acad Sci USA 1981;78:5690–4.10.1073/pnas.78.9.5690Suche in Google Scholar PubMed PubMed Central

97. Zhao Y, Nichols JE, Valdez R, Mendelson CR, Simpson ER. Tumor necrosis factor-alpha stimulates aromatase gene expression in human adipose stromal cells through use of an activating protein-1 binding site upstream of promoter 1.4. Mol Endocrinol 1996;10:1350–7.Suche in Google Scholar

98. Chen D, Reierstad S, Lin Z, Lu M, Brooks C, Li N, Innes J, Bulun SE. Prostaglandin E(2) induces breast cancer related aromatase promoters via activation of p38 and c-Jun NH(2)-terminal kinase in adipose fibroblasts. Cancer Res 2007;67:8914–22.10.1158/0008-5472.CAN-06-4751Suche in Google Scholar PubMed

99. Corbould AM, Judd SJ, Rodgers RJ. Expression of types 1, 2, and 3 17 beta-hydroxysteroid dehydrogenase in subcutaneous abdominal and intra-abdominal adipose tissue of women. J Clin Endocrinol Metab 1998;83:187–94.Suche in Google Scholar

100. Corbould AM, Bawden MJ, Lavranos TC, Rodgers RJ, Judd SJ. The effect of obesity on the ratio of type 3 17beta-hydroxysteroid dehydrogenase mRNA to cytochrome P450 aromatase mRNA in subcutaneous abdominal and intra-abdominal adipose tissue of women. Int J Obes Relat Metab Disord 2002;26:165–75.10.1038/sj.ijo.0801886Suche in Google Scholar PubMed

101. Pedersen SB, Kristensen K, Hermann PA, Katzenellenbogen JA, Richelsen B. Estrogen controls lipolysis by up-regulating alpha2A-adrenergic receptors directly in human adipose tissue through the estrogen receptor alpha. Implications for the female fat distribution. J Clin Endocrinol Metab 2004;89:1869–78.10.1210/jc.2003-031327Suche in Google Scholar PubMed

102. Rice S, Patel B, Bano G, Ugwumadu A, Whitehead SA. Aromatase expression in abdominal omental/visceral and subcutaneous fat depots: a comparison of pregnant and obese women. Fertil Steril 2012;97:1460–6, e1461.10.1016/j.fertnstert.2012.03.008Suche in Google Scholar PubMed

103. Jones ME, Thorburn AW, Britt KL, Hewitt KN, Wreford NG, Proietto J, Oz OK, Leury BJ, Robertson KM, Yao S, Simpson ER. Aromatase-deficient (ArKO) mice have a phenotype of increased adiposity. Proc Natl Acad Sci USA 2000;97:12735–40.10.1073/pnas.97.23.12735Suche in Google Scholar PubMed PubMed Central

104. Misso ML, Murata Y, Boon WC, Jones ME, Britt KL, Simpson ER. Cellular and molecular characterization of the adipose phenotype of the aromatase-deficient mouse. Endocrinology 2003;144:1474–80.10.1210/en.2002-221123Suche in Google Scholar PubMed

105. Jones ME, Mcinnes KJ, Boon WC, Simpson ER. Estrogen and adiposity – utilizing models of aromatase deficiency to explore the relationship. J Steroid Biochem Mol Biol 2007;106:3–7.10.1016/j.jsbmb.2007.05.029Suche in Google Scholar

106. Maffei L, Rochira V, Zirilli L, Antunez P, Aranda C, Fabre B, Simone ML, Pignatti E, Simpson ER, Houssami S, Clyne CD, Carani C. A novel compound heterozygous mutation of the aromatase gene in an adult man: reinforced evidence on the relationship between congenital oestrogen deficiency, adiposity and the metabolic syndrome. Clin Endocrinol (Oxf) 2007;67:218–24.10.1111/j.1365-2265.2007.02864.xSuche in Google Scholar

107. Bulun SE, Lin Z, Imir G, Amin S, Demura M, Yilmaz B, Martin R, Utsunomiya H, Thung S, Gurates B, Tamura M, Langoi D, Deb S. Regulation of aromatase expression in estrogen-responsive breast and uterine disease: from bench to treatment. Pharmacol Rev 2005;57:359–83.10.1124/pr.57.3.6Suche in Google Scholar

108. Zhao H, Pearson EK, Brooks DC, Coon JS, Chen D, Demura M, Zhang M, Clevenger CV, Xu X, Veenstra TD, Chatterton RT, Demayo FJ, Bulun SE. A humanized pattern of aromatase expression is associated with mammary hyperplasia in mice. Endocrinology 2012;153:2701–13.10.1210/en.2011-1761Suche in Google Scholar

109. Pugeat M, Nader N, Hogeveen K, Raverot G, Dechaud H, Grenot C. Sex hormone-binding globulin gene expression in the liver: drugs and the metabolic syndrome. Mol Cell Endocrinol 2010;316:53–9.10.1016/j.mce.2009.09.020Suche in Google Scholar

110. Azrad M, Gower BA, Hunter GR, Nagy TR. Intra-abdominal adipose tissue is independently associated with sex-hormone binding globulin in premenopausal women. Obesity (Silver Spring) 2012;20:1012–5.10.1038/oby.2011.375Suche in Google Scholar

111. Albini A, Rosano C, Angelini G, Amaro A, Esposito AI, Maramotti S, Noonan DM, Pfeffer U. Exogenous hormonal regulation in breast cancer cells by phytoestrogens and endocrine disruptors. Curr Med Chem 2014;21:1129–45.10.2174/0929867321666131129124640Suche in Google Scholar

112. Wang C, Makela T, Hase T, Adlercreutz H, Kurzer MS. Lignans and flavonoids inhibit aromatase enzyme in human preadipocytes. J Steroid Biochem Mol Biol 1994;50:205–12.10.1016/0960-0760(94)90030-2Suche in Google Scholar

113. Odawara H, Iwasaki T, Horiguchi J, Rokutanda N, Hirooka K, Miyazaki W, Koibuchi Y, Shimokawa N, Iino Y, Takeyoshi I, Koibuchi N. Activation of aromatase expression by retinoic acid receptor-related orphan receptor (ROR) alpha in breast cancer cells: identification of a novel ROR response element. J Biol Chem 2009;284:17711–9.10.1074/jbc.M109.009241Suche in Google Scholar PubMed PubMed Central

114. Wilde J, Erdmann M, Mertens M, Eiselt G, Schmidt M. Aromatase activity induction in human adipose fibroblasts by retinoic acids via retinoic acid receptor alpha. J Mol Endocrinol 2013;51:247–60.10.1530/JME-12-0129Suche in Google Scholar PubMed

115. Crandall DL, Busler DE, Novak TJ, Weber RV, Kral JG. Identification of estrogen receptor beta RNA in human breast and abdominal subcutaneous adipose tissue. Biochem Biophys Res Commun 1998;248:523–6.10.1006/bbrc.1998.8997Suche in Google Scholar

116. Howell A, Cuzick J, Baum M, Buzdar A, Dowsett M, Forbes JF, Hoctin-Boes G, Houghton J, Locker GY, Tobias JS, Group AT. Results of the ATAC (Arimidex, Tamoxifen, Alone or in Combination) trial after completion of 5 years’ adjuvant treatment for breast cancer. Lancet 2005;365:60–2.10.1016/S0140-6736(04)17666-6Suche in Google Scholar

117. Sestak I, Harvie M, Howell A, Forbes JF, Dowsett M, Cuzick J. Weight change associated with anastrozole and tamoxifen treatment in postmenopausal women with or at high risk of developing breast cancer. Breast Cancer Res Treat 2012;134:727–34.10.1007/s10549-012-2085-6Suche in Google Scholar

118. Amengual J, Golczak M, Palczewski K, Von Lintig J. Lecithin:retinol acyltransferase is critical for cellular uptake of vitamin A from serum retinol-binding protein. J Biol Chem 2012;287:24216–27.10.1074/jbc.M112.353979Suche in Google Scholar

119. Kawaguchi R, Yu J, Honda J, Hu J, Whitelegge J, Ping P, Wiita P, Bok D, Sun H. A membrane receptor for retinol binding protein mediates cellular uptake of vitamin A. Science 2007;315: 820–5.10.1126/science.1136244Suche in Google Scholar

120. Berry DC, Jin H, Majumdar A, Noy N. Signaling by vitamin A and retinol-binding protein regulates gene expression to inhibit insulin responses. Proc Natl Acad Sci USA 2011;108:4340–5.10.1073/pnas.1011115108Suche in Google Scholar

121. Blaner WS, Obunike JC, Kurlandsky SB, Al-Haideri M, Piantedosi R, Deckelbaum RJ, Goldberg IJ. Lipoprotein lipase hydrolysis of retinyl ester. Possible implications for retinoid uptake by cells. J Biol Chem 1994;269:16559–65.10.1016/S0021-9258(19)89425-5Suche in Google Scholar

122. Yeum KJ, Ahn SH, Rupp De Paiva SA, Lee-Kim YC, Krinsky NI, Russell RM. Correlation between carotenoid concentrations in serum and normal breast adipose tissue of women with benign breast tumor or breast cancer. J Nutr 1998;128:1920–6.10.1093/jn/128.11.1920Suche in Google Scholar PubMed

123. Smith JE, Milch PO, Muto Y, Goodman DS. The plasma transport and metabolism of retinoic acid in the rat. Biochem J 1973;132:821–7.10.1042/bj1320821Suche in Google Scholar PubMed PubMed Central

124. Hill DL, Kalin JR, Starling ME. Disposition of orally administered 13-cis retinoic acid in mice. Ann NY Acad Sci 1981;359:396–7.10.1111/j.1749-6632.1981.tb12769.xSuche in Google Scholar PubMed

125. Noy N. The one-two punch: Retinoic acid suppresses obesity both by promoting energy expenditure and by inhibiting adipogenesis. Adipocyte 2013;2:184–7.10.4161/adip.23489Suche in Google Scholar PubMed PubMed Central

126. Bonet ML, Ribot J, Felipe F, Palou A. Vitamin A and the regulation of fat reserves. Cell Mol Life Sci 2003;60:1311–21.10.1007/s00018-003-2290-xSuche in Google Scholar PubMed

127. Takahashi N, De Luca LM, Breitman TR. Decreased retinoylation in NIH 3T3 cells transformed with activated Ha-ras. Biochem Biophys Res Commun 1997;239:80–4.10.1006/bbrc.1997.7434Suche in Google Scholar PubMed

128. Evans RM, Mangelsdorf DJ. Nuclear Receptors, RXR, and the Big Bang. Cell 2014;157:255–66.10.1016/j.cell.2014.03.012Suche in Google Scholar PubMed PubMed Central

129. Germain P, Chambon P, Eichele G, Evans RM, Lazar MA, Leid M, De Lera AR, Lotan R, Mangelsdorf DJ, Gronemeyer H. International Union of Pharmacology. LX. Retinoic acid receptors. Pharmacol Rev 2006;58:712–25.10.1124/pr.58.4.4Suche in Google Scholar PubMed

130. Germain P, Chambon P, Eichele G, Evans RM, Lazar MA, Leid M, De Lera AR, Lotan R, Mangelsdorf DJ, Gronemeyer H. International Union of Pharmacology. LXIII. Retinoid X receptors. Pharmacol Rev 2006;58:760–72.10.1124/pr.58.4.7Suche in Google Scholar PubMed

131. Shaw N, Elholm M, Noy N. Retinoic acid is a high affinity selective ligand for the peroxisome proliferator-activated receptor beta/delta. J Biol Chem 2003;278:41589–92.10.1074/jbc.C300368200Suche in Google Scholar PubMed

132. Yasmeen R, Jeyakumar SM, Reichert B, Yang F, Ziouzenkova O. The contribution of vitamin A to autocrine regulation of fat depots. Biochim Biophys Acta 2012;1821:190–7.10.1016/j.bbalip.2011.06.004Suche in Google Scholar PubMed PubMed Central

133. Schwarz EJ, Reginato MJ, Shao D, Krakow SL, Lazar MA. Retinoic acid blocks adipogenesis by inhibiting C/EBPbeta-mediated transcription. Mol Cell Biol 1997;17:1552–61.10.1128/MCB.17.3.1552Suche in Google Scholar PubMed PubMed Central

134. Reichert B, Yasmeen R, Jeyakumar SM, Yang F, Thomou T, Alder H, Duester G, Maiseyeu A, Mihai G, Harrison EH, Rajagopalan S, Kirkland JL, Ziouzenkova O. Concerted action of aldehyde dehydrogenases influences depot-specific fat formation. Mol Endocrinol 2011;25:799–809.10.1210/me.2010-0465Suche in Google Scholar PubMed PubMed Central

135. Chen N, Onisko B, Napoli JL. The nuclear transcription factor RARalpha associates with neuronal RNA granules and suppresses translation. J Biol Chem 2008;283:20841–7.10.1074/jbc.M802314200Suche in Google Scholar PubMed PubMed Central

136. Bost F, Caron L, Marchetti I, Dani C, Le Marchand-Brustel Y, Binetruy B. Retinoic acid activation of the ERK pathway is required for embryonic stem cell commitment into the adipocyte lineage. Biochem J 2002;361:621–7.10.1042/bj3610621Suche in Google Scholar

137. Monteiro MC, Wdziekonski B, Villageois P, Vernochet C, Iehle C, Billon N, Dani C. Commitment of mouse embryonic stem cells to the adipocyte lineage requires retinoic acid receptor beta and active GSK3. Stem Cells Dev 2009;18:457–63.10.1089/scd.2008.0154Suche in Google Scholar PubMed

138. Zhong M, Kawaguchi R, Kassai M, Sun H. Retina, retinol, retinal and the natural history of vitamin A as a light sensor. Nutrients 2012;4:2069–96.10.3390/nu4122069Suche in Google Scholar PubMed PubMed Central

139. Ziouzenkova O, Orasanu G, Sharlach M, Akiyama TE, Berger JP, Viereck J, Hamilton JA, Tang G, Dolnikowski GG, Vogel S, Duester G, Plutzky J. Retinaldehyde represses adipogenesis and diet-induced obesity. Nat Med 2007;13:695–702.10.1038/nm1587Suche in Google Scholar PubMed PubMed Central

140. Petrosino JM, Disilvestro D, Ziouzenkova O. Aldehyde dehydrogenase 1A1: friend or foe to female metabolism? Nutrients 2014;6:950–73.10.3390/nu6030950Suche in Google Scholar PubMed PubMed Central

141. Schuchardt JP, Wahlstrom D, Ruegg J, Giese N, Stefan M, Hopf H, Pongratz I, Hakansson H, Eichele G, Pettersson K, Nau H. The endogenous retinoid metabolite S-4-oxo-9-cis-13,14-dihydro-retinoic acid activates retinoic acid receptor signalling both in vitro and in vivo. FEBS J 2009;276:3043–59.10.1111/j.1742-4658.2009.07023.xSuche in Google Scholar PubMed

142. Moise AR, Alvarez S, Dominguez M, Alvarez R, Golczak M, Lobo GP, Von Lintig J, De Lera AR, Palczewski K. Activation of retinoic acid receptors by dihydroretinoids. Mol Pharmacol 2009;76:1228–37.10.1124/mol.109.060038Suche in Google Scholar PubMed PubMed Central

143. Strom K, Gundersen TE, Hansson O, Lucas S, Fernandez C, Blomhoff R, Holm C. Hormone-sensitive lipase (HSL) is also a retinyl ester hydrolase: evidence from mice lacking HSL. FASEB J 2009;23:2307–16.10.1096/fj.08-120923Suche in Google Scholar PubMed

144. Van Der Weyden MB, Rose IS, Newitt P. Folate-deficient human lymphoblasts: changes in de novo purine and pyrimidine synthesis and phosphoribosylpyrophosphate. Eur J Haematol 1991;47:213–8.10.1111/j.1600-0609.1991.tb01557.xSuche in Google Scholar PubMed

145. Kumar S, Sandell LL, Trainor PA, Koentgen F, Duester G. Alcohol and aldehyde dehydrogenases: retinoid metabolic effects in mouse knockout models. Biochim Biophys Acta 2012;1821:198–205.10.1016/j.bbalip.2011.04.004Suche in Google Scholar

146. Kong D, Kotraiah V. Modulation of aldehyde dehydrogenase activity affects (+/-)-4-hydroxy-2E-nonenal (HNE) toxicity and HNE-protein adduct levels in PC12 cells. J Mol Neurosci 2012;47:595–603.10.1007/s12031-011-9688-ySuche in Google Scholar

147. Trasino SE, Harrison EH, Wang TT. Androgen regulation of aldehyde dehydrogenase 1A3 (ALDH1A3) in the androgen-responsive human prostate cancer cell line LNCaP. Exp Biol Med (Maywood) 2007;232:762–71.Suche in Google Scholar

148. Duester G, Mic FA, Molotkov A. Cytosolic retinoid dehydrogenases govern ubiquitous metabolism of retinol to retinaldehyde followed by tissue-specific metabolism to retinoic acid. Chem Biol Interact 2003;143–144:201–10.10.1016/S0009-2797(02)00204-1Suche in Google Scholar

149. Greene WK, Bahn S, Masson N, Rabbitts TH. The T-cell oncogenic protein HOX11 activates Aldh1 expression in NIH 3T3 cells but represses its expression in mouse spleen development. Mol Cell Biol 1998;18:7030–7.10.1128/MCB.18.12.7030Suche in Google Scholar PubMed PubMed Central

150. Makia NL, Amunom I, Falkner KC, Conklin DJ, Surapureddi S, Goldstein JA, Prough RA. Activator protein-1 regulation of murine aldehyde dehydrogenase 1a1. Mol Pharmacol 2012;82:601–13.10.1124/mol.112.078147Suche in Google Scholar PubMed PubMed Central

151. Alam M, Ahmad R, Rajabi H, Kharbanda A, Kufe D. MUC1-C oncoprotein activates ERK-->C/EBPbeta signaling and induction of aldehyde dehydrogenase 1A1 in breast cancer cells. J Biol Chem 2013;288:30892–903.10.1074/jbc.M113.477158Suche in Google Scholar PubMed PubMed Central

152. Huq MD, Tsai NP, Gupta P, Wei LN. Regulation of retinal dehydrogenases and retinoic acid synthesis by cholesterol metabolites. EMBO J 2006;25:3203–13.10.1038/sj.emboj.7601181Suche in Google Scholar PubMed PubMed Central

153. Drolet R, Richard C, Sniderman AD, Mailloux J, Fortier M, Huot C, Rheaume C, Tchernof A. Hypertrophy and hyperplasia of abdominal adipose tissues in women. Int J Obes (Lond) 2008;32:283–91.10.1038/sj.ijo.0803708Suche in Google Scholar PubMed

Received: 2014-5-11
Accepted: 2014-5-28
Published Online: 2014-7-3
Published in Print: 2014-7-1

©2014 by De Gruyter

Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/hmbci-2014-0019/html
Button zum nach oben scrollen