Abstract
Achievement of sexual maturation and maintenance of fertility in adulthood are functions that are sensitive to the metabolic status of the organism, particularly the magnitude of fat reserves. In this sense, the adipocyte-derived hormone, leptin, plays a major role in linking metabolic cues and the control of multiple neuroendocrine axes. The hypothalamus is a key site mediating leptin actions, including those involved in the modulation of the hypothalamus-pituitary-gonads (HPG) axis at different stages of development and in different environmental conditions. In the present review, we provide an update of the role of leptin in reproduction and discuss its interactions with neurons, neurotransmitters and downstream targets of the reproductive axis, with a special emphasis on the actions of leptin in the central nervous system. We hope this review will contribute to the understanding of the mechanisms whereby metabolic signals, especially leptin, influence the reproductive neuroendocrine axis modulating its activity in different nutritional states. Special attention will be given to recent advances in the identification of key hypothalamic sites and signaling pathways relevant to leptin’s action in reproductive control.
Acknowledgments
The authors are indebted to research members of the Elias team at the Department of Molecular and Integrative Physiology and the Reproductive Sciences Program of the University of Michigan, Ann Arbor-MI who participated in discussions about the data in the present review. The Elias lab is supported by the NIH grants HD061539 and HD069702. The authors declare no potential conflicts of interest with respect to the authorship and/or publication of this article.
References
1. Frisch RE. Fatness, menarche, and female fertility. Perspect Biol Med 1985;28:611–33.10.1353/pbm.1985.0010Suche in Google Scholar PubMed
2. Herman-Giddens ME, Slora EJ, Wasserman RC, Bourdony CJ, Bhapkar MV, Koch GG, Hasemeier CM. Secondary sexual characteristics and menses in young girls seen in office practice: a study from the Pediatric Research in Office Settings network. Pediatrics 1997;99:505–12.10.1542/peds.99.4.505Suche in Google Scholar PubMed
3. Biro FM, Wien M. Childhood obesity and adult morbidities. Am J Clin Nutr 2010;91:1499S–505S.10.3945/ajcn.2010.28701BSuche in Google Scholar PubMed PubMed Central
4. Ahima RS, Osei SY. Leptin signaling. Physiol Behav 2004;81: 223–41.10.1016/j.physbeh.2004.02.014Suche in Google Scholar PubMed
5. Halaas JL, Gajiwala KS, Maffei M, Cohen SL, Chait BT, Rabinowitz D, Lallone RL, Burley SK, Friedman JM. Weight-reducing effects of the plasma protein encoded by the obese gene. Science 1995;269:543–6.10.1126/science.7624777Suche in Google Scholar PubMed
6. Tena-Sempere M. Interaction between energy homeostasis and reproduction: central effects of leptin and ghrelin on the reproductive axis. Horm Metab Res 2013;45:919–27.10.1055/s-0033-1355399Suche in Google Scholar PubMed
7. Fungfuang W, Terada M, Komatsu N, Moon C, Saito TR. Effects of estrogen on food intake, serum leptin levels and leptin mRNA expression in adipose tissue of female rats. Lab Anim Res 2013;29:168–73.10.5625/lar.2013.29.3.168Suche in Google Scholar PubMed PubMed Central
8. Joy TR, Hegele RA. Prevalence of reproductive abnormalities among women with familial partial lipodystrophy. Endocr Pract 2008;14:1126–32.10.4158/EP.14.9.1126Suche in Google Scholar PubMed
9. Elias CF, Purohit D. Leptin signaling and circuits in puberty and fertility. Cell Mol Life Sci 2013;70:841–62.10.1007/s00018-012-1095-1Suche in Google Scholar PubMed PubMed Central
10. Farooqi IS. Leptin and the onset of puberty: insights from rodent and human genetics. Semin Reprod Med 2002;20:139–44.10.1055/s-2002-32505Suche in Google Scholar PubMed
11. Begriche K, Letteron P, Abbey-Toby A, Vadrot N, Robin MA, Bado A, Pessayre D, Fromenty B. Partial leptin deficiency favors diet-induced obesity and related metabolic disorders in mice. Am J Physiol Endocrinol Metab 2008;294:E939–51.10.1152/ajpendo.00379.2007Suche in Google Scholar PubMed
12. Margetic S, Gazzola C, Pegg GG, Hill RA. Leptin: a review of its peripheral actions and interactions. Int J Obes Relat Metab Disord 2002;26:1407–33.10.1038/sj.ijo.0802142Suche in Google Scholar PubMed
13. Sinha MK, Ohannesian JP, Heiman ML, Kriauciunas A, Stephens TW, Magosin S, Marco C, Caro JF. Nocturnal rise of leptin in lean, obese, and non-insulin-dependent diabetes mellitus subjects. J Clin Invest 1996;97:1344–7.10.1172/JCI118551Suche in Google Scholar PubMed PubMed Central
14. Ahima RS, Prabakaran D, Flier JS. Postnatal leptin surge and regulation of circadian rhythm of leptin by feeding. Implications for energy homeostasis and neuroendocrine function. J Clin Invest 1998;101:1020–7.10.1172/JCI1176Suche in Google Scholar PubMed PubMed Central
15. Chan JL, Heist K, DePaoli AM, Veldhuis JD, Mantzoros CS. The role of falling leptin levels in the neuroendocrine and metabolic adaptation to short-term starvation in healthy men. J Clin Invest 2003;111:1409–21.10.1172/JCI200317490Suche in Google Scholar
16. Maffei M, Halaas J, Ravussin E, Pratley RE, Lee GH, Zhang Y, Fei H, Kim S, Lallone R, Ranganathan S, Kern PA, Friedman JM. Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nat Med 1995;1:1155–61.10.1038/nm1195-1155Suche in Google Scholar PubMed
17. Ahima RS, Prabakaran D, Mantzoros C, Qu D, Lowell B, Maratos-Flier E, Flier JS. Role of leptin in the neuroendocrine response to fasting. Nature 1996;382:250–2.10.1038/382250a0Suche in Google Scholar PubMed
18. Gonzalez LC, Pinilla L, Tena-Sempere M, Aguilar E. Leptin(116–130) stimulates prolactin and luteinizing hormone secretion in fasted adult male rats. Neuroendocrinology 1999;70:213–20.10.1159/000054479Suche in Google Scholar PubMed
19. Ahima RS, Saper CB, Flier JS, Elmquist JK. Leptin regulation of neuroendocrine systems. Front Neuroendocrinol 2000;21: 263–307.10.1006/frne.2000.0197Suche in Google Scholar PubMed
20. Strobel A, Issad T, Camoin L, Ozata M, Strosberg AD. A leptin missense mutation associated with hypogonadism and morbid obesity. Nat Genet 1998;18:213–5.10.1038/ng0398-213Suche in Google Scholar PubMed
21. Ahima RS, Dushay J, Flier SN, Prabakaran D, Flier JS. Leptin accelerates the onset of puberty in normal female mice. J Clin Invest 1997;99:391–5.10.1172/JCI119172Suche in Google Scholar PubMed PubMed Central
22. Chehab FF, Mounzih K, Lu R, Lim ME. Early onset of reproductive function in normal female mice treated with leptin. Science 1997;275:88–90.10.1126/science.275.5296.88Suche in Google Scholar PubMed
23. Roa J, Garcia-Galiano D, Castellano JM, Gaytan F, Pinilla L, Tena-Sempere M. Metabolic control of puberty onset: new players, new mechanisms. Mol Cell Endocrinol 2010;324: 87–94.10.1016/j.mce.2009.12.018Suche in Google Scholar PubMed
24. Lungu AO, Zadeh ES, Goodling A, Cochran E, Gorden P. Insulin resistance is a sufficient basis for hyperandrogenism in lipodystrophic women with polycystic ovarian syndrome. J Clin Endocrinol Metab 2012;97:563–7.10.1210/jc.2011-1896Suche in Google Scholar PubMed PubMed Central
25. Musso C, Cochran E, Javor E, Young J, Depaoli AM, Gorden P. The long-term effect of recombinant methionyl human leptin therapy on hyperandrogenism and menstrual function in female and pituitary function in male and female hypoleptinemic lipodystrophic patients. Metabolism 2005;54:255–63.10.1016/j.metabol.2004.08.021Suche in Google Scholar PubMed
26. Matejek N, Weimann E, Witzel C, Molenkamp G, Schwidergall S, Bohles H. Hypoleptinaemia in patients with anorexia nervosa and in elite gymnasts with anorexia athletica. Int J Sports Med 1999;20:451–6.10.1055/s-1999-8834Suche in Google Scholar PubMed
27. Welt CK, Chan JL, Bullen J, Murphy R, Smith P, DePaoli AM, Karalis A, Mantzoros CS. Recombinant human leptin in women with hypothalamic amenorrhea. N Engl J Med 2004;351:987–97.10.1056/NEJMoa040388Suche in Google Scholar PubMed
28. Cohen P, Zhao C, Cai X, Montez JM, Rohani SC, Feinstein P, Mombaerts P, Friedman JM. Selective deletion of leptin receptor in neurons leads to obesity. J Clin Invest 2001;108:1113–21.10.1172/JCI200113914Suche in Google Scholar
29. de Luca C, Kowalski TJ, Zhang Y, Elmquist JK, Lee C, Kilimann MW, Ludwig T, Liu SM, Chua SC, Jr. Complete rescue of obesity, diabetes, and infertility in db/db mice by neuron-specific LEPR-B transgenes. J Clin Invest 2005;115:3484–93.10.1172/JCI24059Suche in Google Scholar PubMed PubMed Central
30. Chua SC, Jr., Liu SM, Li Q, Sun A, DeNino WF, Heymsfield SB, Guo XE. Transgenic complementation of leptin receptor deficiency. II. Increased leptin receptor transgene dose effects on obesity/diabetes and fertility/lactation in lepr-db/db mice. Am J Physiol Endocrinol Metab 2004;286:E384–92.10.1152/ajpendo.00349.2003Suche in Google Scholar PubMed
31. Elmquist JK, Bjorbaek C, Ahima RS, Flier JS, Saper CB. Distributions of leptin receptor mRNA isoforms in the rat brain. J Comp Neurol 1998;395:535–47.10.1002/(SICI)1096-9861(19980615)395:4<535::AID-CNE9>3.0.CO;2-2Suche in Google Scholar
32. Scott MM, Lachey JL, Sternson SM, Lee CE, Elias CF, Friedman JM, Elmquist JK. Leptin targets in the mouse brain. J Comp Neurol 2009;514:518–32.10.1002/cne.22025Suche in Google Scholar
33. Cunningham MJ, Clifton DK, Steiner RA. Leptin’s actions on the reproductive axis: perspectives and mechanisms. Biol Reprod 1999;60:216–22.10.1095/biolreprod60.2.216Suche in Google Scholar
34. Yu WH, Walczewska A, Karanth S, McCann SM. Nitric oxide mediates leptin-induced luteinizing hormone-releasing hormone (LHRH) and LHRH and leptin-induced LH release from the pituitary gland. Endocrinology 1997;138:5055–8.10.1210/endo.138.11.5649Suche in Google Scholar
35. Magni P, Vettor R, Pagano C, Calcagno A, Beretta E, Messi E, Zanisi M, Martini L, Motta M. Expression of a leptin receptor in immortalized gonadotropin-releasing hormone-secreting neurons. Endocrinology 1999;140:1581–5.10.1210/endo.140.4.6622Suche in Google Scholar
36. Finn PD, Cunningham MJ, Pau KY, Spies HG, Clifton DK, Steiner RA. The stimulatory effect of leptin on the neuroendocrine reproductive axis of the monkey. Endocrinology 1998;139:4652–62.10.1210/endo.139.11.6297Suche in Google Scholar
37. Quennell JH, Mulligan AC, Tups A, Liu X, Phipps SJ, Kemp CJ, Herbison AE, Grattan DR, Anderson GM. Leptin indirectly regulates gonadotropin-releasing hormone neuronal function. Endocrinology 2009;150:2805–12.10.1210/en.2008-1693Suche in Google Scholar
38. Louis GW, Greenwald-Yarnell M, Phillips R, Coolen LM, Lehman MN, Myers MG, Jr. Molecular mapping of the neural pathways linking leptin to the neuroendocrine reproductive axis. Endocrinology 2011;152:2302–10.10.1210/en.2011-0096Suche in Google Scholar
39. Patterson CM, Leshan RL, Jones JC, Myers MG, Jr. Molecular mapping of mouse brain regions innervated by leptin receptor-expressing cells. Brain Res 2011;1378:18–28.10.1016/j.brainres.2011.01.010Suche in Google Scholar
40. Leshan RL, Louis GW, Jo YH, Rhodes CJ, Munzberg H, Myers MG, Jr. Direct innervation of GnRH neurons by metabolic- and sexual odorant-sensing leptin receptor neurons in the hypothalamic ventral premammillary nucleus. J Neurosci 2009;29:3138–47.10.1523/JNEUROSCI.0155-09.2009Suche in Google Scholar
41. Williams KW, Sohn JW, Donato J, Jr., Lee CE, Zhao JJ, Elmquist JK, Elias CF. The acute effects of leptin require PI3K signaling in the hypothalamic ventral premammillary nucleus. J Neurosci 2011;31:13147–56.10.1523/JNEUROSCI.2602-11.2011Suche in Google Scholar PubMed PubMed Central
42. Pinilla L, Aguilar E, Dieguez C, Millar RP, Tena-Sempere M. Kisspeptins and reproduction: physiological roles and regulatory mechanisms. Physiol Rev 2012;92:1235–316.10.1152/physrev.00037.2010Suche in Google Scholar PubMed
43. Gottsch ML, Clifton DK, Steiner RA. From KISS1 to kisspeptins: An historical perspective and suggested nomenclature. Peptides 2009;30:4–9.10.1016/j.peptides.2008.06.016Suche in Google Scholar PubMed PubMed Central
44. de Roux N, Genin E, Carel JC, Matsuda F, Chaussain JL, Milgrom E. Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54. Proc Natl Acad Sci USA 2003;100:10972–6.10.1073/pnas.1834399100Suche in Google Scholar PubMed PubMed Central
45. Seminara SB, Messager S, Chatzidaki EE, Thresher RR, Acierno JS, Jr., Shagoury JK, Bo-Abbas Y, Kuohung W, Schwinof KM, Hendrick AG, Zahn D, Dixon J, Kaiser UB, Slaugenhaupt SA, Gusella JF, O’Rahilly S, Carlton MB, Crowley WF, Jr., Aparicio SA, Colledge WH. The GPR54 gene as a regulator of puberty. N Engl J Med 2003;349:1614–27.10.1056/NEJMoa035322Suche in Google Scholar PubMed
46. Clarkson J, d’Anglemont de Tassigny X, Moreno AS, Colledge WH, Herbison AE. Kisspeptin-GPR54 signaling is essential for preovulatory gonadotropin-releasing hormone neuron activation and the luteinizing hormone surge. J Neurosci 2008;28:8691–7.10.1523/JNEUROSCI.1775-08.2008Suche in Google Scholar PubMed PubMed Central
47. Tena-Sempere M. Kisspeptin signaling in the brain: recent developments and future challenges. Mol Cell Endocrinol 2010;314:164–9.10.1016/j.mce.2009.05.004Suche in Google Scholar PubMed
48. Clarkson J, Boon WC, Simpson ER, Herbison AE. Postnatal development of an estradiol-kisspeptin positive feedback mechanism implicated in puberty onset. Endocrinology 2009;150:3214–20.10.1210/en.2008-1733Suche in Google Scholar PubMed PubMed Central
49. Navarro VM, Tena-Sempere M. Neuroendocrine control by kisspeptins: role in metabolic regulation of fertility. Nat Rev Endocrinol 2012;8:40–53.10.1038/nrendo.2011.147Suche in Google Scholar PubMed
50. Smith JT, Acohido BV, Clifton DK, Steiner RA. KiSS-1 neurones are direct targets for leptin in the ob/ob mouse. J Neuroendocrinol 2006;18:298–303.10.1111/j.1365-2826.2006.01417.xSuche in Google Scholar PubMed
51. Qiu J, Fang Y, Bosch MA, Ronnekleiv OK, Kelly MJ. Guinea pig kisspeptin neurons are depolarized by leptin via activation of TRPC channels. Endocrinology 2011;152:1503–14.10.1210/en.2010-1285Suche in Google Scholar PubMed PubMed Central
52. Cravo RM, Margatho LO, Osborne-Lawrence S, Donato J, Jr., Atkin S, Bookout AL, Rovinsky S, Frazao R, Lee CE, Gautron L, Zigman JM, Elias CF. Characterization of Kiss1 neurons using transgenic mouse models. Neuroscience 2011;173:37–56.10.1016/j.neuroscience.2010.11.022Suche in Google Scholar PubMed PubMed Central
53. Cravo RM, Frazao R, Perello M, Osborne-Lawrence S, Williams KW, Zigman JM, Vianna C, Elias CF. Leptin signaling in Kiss1 neurons arises after pubertal development. PLoS One 2013;8:e58698.10.1371/journal.pone.0058698Suche in Google Scholar PubMed PubMed Central
54. Elias CF. A critical view of the use of genetic tools to unveil neural circuits: the case of leptin action in reproduction. Am J Physiol Regul Integr Comp Physiol 2014;306:R1–9.10.1152/ajpregu.00444.2013Suche in Google Scholar PubMed PubMed Central
55. Castellano JM, Bentsen AH, Mikkelsen JD, Tena-Sempere M. Kisspeptins: bridging energy homeostasis and reproduction. Brain Res 2010;1364:129–38.10.1016/j.brainres.2010.08.057Suche in Google Scholar PubMed
56. De Bond JA, Smith JT. Kisspeptin and energy balance in reproduction. Reproduction 2014;147:R53–63.10.1530/REP-13-0509Suche in Google Scholar PubMed
57. Donato J, Jr., Cravo RM, Frazao R, Gautron L, Scott MM, Lachey J, Castro IA, Margatho LO, Lee S, Lee C, Richardson JA, Friedman J, Chua S, Jr., Coppari R, Zigman JM, Elmquist JK, Elias CF. Leptin’s effect on puberty in mice is relayed by the ventral premammillary nucleus and does not require signaling in Kiss1 neurons. J Clin Invest 2011;121:355–68.10.1172/JCI45106Suche in Google Scholar PubMed PubMed Central
58. Castellano JM, Navarro VM, Fernandez-Fernandez R, Nogueiras R, Tovar S, Roa J, Vazquez MJ, Vigo E, Casanueva FF, Aguilar E, Pinilla L, Dieguez C, Tena-Sempere M. Changes in hypothalamic KiSS-1 system and restoration of pubertal activation of the reproductive axis by kisspeptin in undernutrition. Endocrinology 2005;146:3917–25.10.1210/en.2005-0337Suche in Google Scholar PubMed
59. Brown RE, Imran SA, Ur E, Wilkinson M. KiSS-1 mRNA in adipose tissue is regulated by sex hormones and food intake. Mol Cell Endocrinol 2008;281:64–72.10.1016/j.mce.2007.10.011Suche in Google Scholar PubMed
60. Kalamatianos T, Grimshaw SE, Poorun R, Hahn JD, Coen CW. Fasting reduces KiSS-1 expression in the anteroventral periventricular nucleus (AVPV): effects of fasting on the expression of KiSS-1 and neuropeptide Y in the AVPV or arcuate nucleus of female rats. J Neuroendocrinol 2008;20:1089–97.10.1111/j.1365-2826.2008.01757.xSuche in Google Scholar PubMed
61. Luque RM, Kineman RD, Tena-Sempere M. Regulation of hypothalamic expression of KiSS-1 and GPR54 genes by metabolic factors: analyses using mouse models and a cell line. Endocrinology 2007;148:4601–11.10.1210/en.2007-0500Suche in Google Scholar PubMed
62. True C, Kirigiti MA, Kievit P, Grove KL, Smith MS. Leptin is not the critical signal for kisspeptin or luteinising hormone restoration during exit from negative energy balance. J Neuroendocrinol 2011;23:1099–112.10.1111/j.1365-2826.2011.02144.xSuche in Google Scholar PubMed PubMed Central
63. Quennell JH, Howell CS, Roa J, Augustine RA, Grattan DR, Anderson GM. Leptin deficiency and diet-induced obesity reduce hypothalamic kisspeptin expression in mice. Endocrinology 2011;152:1541–50.10.1210/en.2010-1100Suche in Google Scholar PubMed PubMed Central
64. Castellano JM, Bentsen AH, Sanchez-Garrido MA, Ruiz-Pino F, Romero M, Garcia-Galiano D, Aguilar E, Pinilla L, Dieguez C, Mikkelsen JD, Tena-Sempere M. Early metabolic programming of puberty onset: impact of changes in postnatal feeding and rearing conditions on the timing of puberty and development of the hypothalamic kisspeptin system. Endocrinology 2011;152:3396–408.10.1210/en.2010-1415Suche in Google Scholar PubMed
65. Donato J, Jr., Frazao R, Fukuda M, Vianna CR, Elias CF. Leptin induces phosphorylation of neuronal nitric oxide synthase in defined hypothalamic neurons. Endocrinology 2010;151: 5415–27.10.1210/en.2010-0651Suche in Google Scholar PubMed PubMed Central
66. Leshan RL, Greenwald-Yarnell M, Patterson CM, Gonzalez IE, Myers MG, Jr. Leptin action through hypothalamic nitric oxide synthase-1-expressing neurons controls energy balance. Nat Med 2012;18:820–3.10.1038/nm.2724Suche in Google Scholar PubMed PubMed Central
67. Zuure WA, Roberts AL, Quennell JH, Anderson GM. Leptin signaling in GABA neurons, but not glutamate neurons, is required for reproductive function. J Neurosci 2013;33: 17874–83.10.1523/JNEUROSCI.2278-13.2013Suche in Google Scholar PubMed PubMed Central
68. Roa J. Role of GnRH neurons and their neuronal afferents as key integrators between food intake regulatory signals and the control of reproduction. Int J Endocrinol 2013;2013:518046.10.1155/2013/518046Suche in Google Scholar PubMed PubMed Central
69. Ward DR, Dear FM, Ward IA, Anderson SI, Spergel DJ, Smith PA, Ebling FJ. Innervation of gonadotropin-releasing hormone neurons by peptidergic neurons conveying circadian or energy balance information in the mouse. PLoS One 2009;4:e5322.10.1371/journal.pone.0005322Suche in Google Scholar PubMed PubMed Central
70. Balthasar N, Coppari R, McMinn J, Liu SM, Lee CE, Tang V, Kenny CD, McGovern RA, Chua SC, Jr., Elmquist JK, Lowell BB. Leptin receptor signaling in POMC neurons is required for normal body weight homeostasis. Neuron 2004;42:983–91.10.1016/j.neuron.2004.06.004Suche in Google Scholar PubMed
71. van de Wall E, Leshan R, Xu AW, Balthasar N, Coppari R, Liu SM, Jo YH, MacKenzie RG, Allison DB, Dun NJ, Elmquist J, Lowell BB, Barsh GS, de Luca C, Myers MG, Jr., Schwartz GJ, Chua SC, Jr. Collective and individual functions of leptin receptor modulated neurons controlling metabolism and ingestion. Endocrinology 2008;149:1773–85.10.1210/en.2007-1132Suche in Google Scholar PubMed PubMed Central
72. Israel DD, Sheffer-Babila S, de Luca C, Jo YH, Liu SM, Xia Q, Spergel DJ, Dun SL, Dun NJ, Chua SC, Jr. Effects of leptin and melanocortin signaling interactions on pubertal development and reproduction. Endocrinology 2012;153:2408–19.10.1210/en.2011-1822Suche in Google Scholar PubMed PubMed Central
73. Wu Q, Whiddon BB, Palmiter RD. Ablation of neurons expressing agouti-related protein, but not melanin concentrating hormone, in leptin-deficient mice restores metabolic functions and fertility. Proc Natl Acad Sci USA 2012;109:3155–60.10.1073/pnas.1120501109Suche in Google Scholar PubMed PubMed Central
74. Sheffer-Babila S, Sun Y, Israel DD, Liu SM, Neal-Perry G, Chua SC, Jr. Agouti-related peptide plays a critical role in leptin’s effects on female puberty and reproduction. Am J Physiol Endocrinol Metab 2013;305:E1512–20.10.1152/ajpendo.00241.2013Suche in Google Scholar PubMed PubMed Central
75. Chua SC, Jr., Chung WK, Wu-Peng XS, Zhang Y, Liu SM, Tartaglia L, Leibel RL. Phenotypes of mouse diabetes and rat fatty due to mutations in the OB (leptin) receptor. Science 1996;271:994–6.10.1126/science.271.5251.994Suche in Google Scholar PubMed
76. Hekerman P, Zeidler J, Bamberg-Lemper S, Knobelspies H, Lavens D, Tavernier J, Joost HG, Becker W. Pleiotropy of leptin receptor signalling is defined by distinct roles of the intracellular tyrosines. FEBS J 2005;272:109–19.10.1111/j.1432-1033.2004.04391.xSuche in Google Scholar
77. Gao Q, Wolfgang MJ, Neschen S, Morino K, Horvath TL, Shulman GI, Fu XY. Disruption of neural signal transducer and activator of transcription 3 causes obesity, diabetes, infertility, and thermal dysregulation. Proc Natl Acad Sci USA 2004;101:4661–6.10.1073/pnas.0303992101Suche in Google Scholar PubMed PubMed Central
78. Bates SH, Stearns WH, Dundon TA, Schubert M, Tso AW, Wang Y, Banks AS, Lavery HJ, Haq AK, Maratos-Flier E, Neel BG, Schwartz MW, Myers MG, Jr. STAT3 signalling is required for leptin regulation of energy balance but not reproduction. Nature 2003;421:856–9.10.1038/nature01388Suche in Google Scholar PubMed
79. Singireddy AV, Inglis MA, Zuure WA, Kim JS, Anderson GM. Neither signal transducer and activator of transcription 3 (STAT3) or STAT5 signaling pathways are required for leptin’s effects on fertility in mice. Endocrinology 2013;154:2434–45.10.1210/en.2013-1109Suche in Google Scholar PubMed
80. Patterson CM, Villanueva EC, Greenwald-Yarnell M, Rajala M, Gonzalez IE, Saini N, Jones J, Myers MG, Jr. Leptin action via LepR-b Tyr1077 contributes to the control of energy balance and female reproduction. Mol Metab 2012;1:61–9.10.1016/j.molmet.2012.05.001Suche in Google Scholar PubMed PubMed Central
81. Zhou Y, Rui L. Leptin signaling and leptin resistance. Front Med 2013;7:207–22.10.1007/s11684-013-0263-5Suche in Google Scholar PubMed PubMed Central
82. Bjornholm M, Munzberg H, Leshan RL, Villanueva EC, Bates SH, Louis GW, Jones JC, Ishida-Takahashi R, Bjorbaek C, Myers MG, Jr. Mice lacking inhibitory leptin receptor signals are lean with normal endocrine function. J Clin Invest 2007;117:1354–60.10.1172/JCI30688Suche in Google Scholar PubMed PubMed Central
83. Niswender KD, Morton GJ, Stearns WH, Rhodes CJ, Myers MG, Jr., Schwartz MW. Intracellular signalling. Key enzyme in leptin-induced anorexia. Nature 2001;413:794–5.10.1038/35101657Suche in Google Scholar PubMed
84. White MF. IRS proteins and the common path to diabetes. Am J Physiol Endocrinol Metab 2002;283:E413–22.10.1152/ajpendo.00514.2001Suche in Google Scholar PubMed
85. Burks DJ, Font de Mora J, Schubert M, Withers DJ, Myers MG, Towery HH, Altamuro SL, Flint CL, White MF. IRS-2 pathways integrate female reproduction and energy homeostasis. Nature 2000;407:377–82.10.1038/35030105Suche in Google Scholar PubMed
86. Sadagurski M, Leshan RL, Patterson C, Rozzo A, Kuznetsova A, Skorupski J, Jones JC, Depinho RA, Myers MG, Jr., White MF. IRS2 signaling in LepR-b neurons suppresses FoxO1 to control energy balance independently of leptin action. Cell Metab 2012;15:703–12.10.1016/j.cmet.2012.04.011Suche in Google Scholar PubMed PubMed Central
87. Sadagurski M, Dong XC, Myers MG, Jr., White MF. Irs2 and Irs4 synergize in non-LepRb neurons to control energy balance and glucose homeostasis. Mol Metab 2014;3:55–63.10.1016/j.molmet.2013.10.004Suche in Google Scholar PubMed PubMed Central
88. Cota D, Proulx K, Smith KA, Kozma SC, Thomas G, Woods SC, Seeley RJ. Hypothalamic mTOR signaling regulates food intake. Science 2006;312:927–30.10.1126/science.1124147Suche in Google Scholar PubMed
89. Roa J, Tena-Sempere M. Energy balance and puberty onset: emerging role of central mTOR signaling. Trends Endocrinol Metab 2010;21:519–28.10.1016/j.tem.2010.05.003Suche in Google Scholar PubMed
90. Roa J, Garcia-Galiano D, Varela L, Sanchez-Garrido MA, Pineda R, Castellano JM, Ruiz-Pino F, Romero M, Aguilar E, Lopez M, Gaytan F, Dieguez C, Pinilla L, Tena-Sempere M. The mammalian target of rapamycin as novel central regulator of puberty onset via modulation of hypothalamic Kiss1 system. Endocrinology 2009;150:5016–26.10.1210/en.2009-0096Suche in Google Scholar PubMed
91. Khan SM, Hamnvik OP, Brinkoetter M, Mantzoros CS. Leptin as a modulator of neuroendocrine function in humans. Yonsei Med J 2012;53:671–9.10.3349/ymj.2012.53.4.671Suche in Google Scholar PubMed PubMed Central
92. Saad MF, Damani S, Gingerich RL, Riad-Gabriel MG, Khan A, Boyadjian R, Jinagouda SD, el-Tawil K, Rude RK, Kamdar V. Sexual dimorphism in plasma leptin concentration. J Clin Endocrinol Metab 1997;82:579–84.10.1210/jc.82.2.579Suche in Google Scholar
93. Schneider G, Kirschner MA, Berkowitz R, Ertel NH. Increased estrogen production in obese men. J Clin Endocrinol Metab 1979;48:633–8.10.1210/jcem-48-4-633Suche in Google Scholar PubMed
94. Mizutani T, Nishikawa Y, Adachi H, Enomoto T, Ikegami H, Kurachi H, Nomura T, Miyake A. Identification of estrogen receptor in human adipose tissue and adipocytes. J Clin Endocrinol Metab 1994;78:950–4.Suche in Google Scholar
95. Tanaka M, Nakaya S, Kumai T, Watanabe M, Tateishi T, Shimizu H, Kobayashi S. Effects of estrogen on serum leptin levels and leptin mRNA expression in adipose tissue in rats. Horm Res 2001;56:98–104.10.1159/000048099Suche in Google Scholar PubMed
96. Pinilla L, Seoane LM, Gonzalez L, Carro E, Aguilar E, Casanueva FF, Dieguez C. Regulation of serum leptin levels by gonadal function in rats. Eur J Endocrinol 1999;140:468–73.10.1530/eje.0.1400468Suche in Google Scholar PubMed
©2014 by De Gruyter
Artikel in diesem Heft
- Frontmatter
- Topic 3: Reproduction, Obesity and Food Intake: Role of Leptin, Sex Hormones and Neuroendocrine Control
- Review Articles
- Role of the adipocyte-derived hormone leptin in reproductive control
- Race differences in obesity and its relationship to the sex hormone milieu
- Neuroendocrine control of satiation
Artikel in diesem Heft
- Frontmatter
- Topic 3: Reproduction, Obesity and Food Intake: Role of Leptin, Sex Hormones and Neuroendocrine Control
- Review Articles
- Role of the adipocyte-derived hormone leptin in reproductive control
- Race differences in obesity and its relationship to the sex hormone milieu
- Neuroendocrine control of satiation