Startseite Mathematik The Roman ideal
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The Roman ideal

  • Paweł Klinga , Andrzej Nowik EMAIL logo und Anna Wąsik
Veröffentlicht/Copyright: 27. Dezember 2025
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The aim of this paper is to demonstrate the existence of a proper ideal on the Cantor space that contains three well-known ideals. Our construction is based on specific operations that can be considered as tools for generating new sets. Additionally, we examine several properties of the sets produced in this way.

MSC 2020: 03E05; 11B05; 03E15

References

[1] P. Eliaš, Dirichlet sets, Erdős–Kunen–Mauldin theorem, and analytic subgroups of the reals, Proc. Amer. Math. Soc. 139 (2011), no. 6, 2093–2104. 10.1090/S0002-9939-2010-10639-1Suche in Google Scholar

[2] R. Filipów, On Hindman spaces and the Bolzano–Weierstrass property, Topology Appl. 160 (2013), no. 15, 2003–2011. 10.1016/j.topol.2013.08.007Suche in Google Scholar

[3] J. Flašková, Ultrafilters and small sets, PhD thesis, Univerzita Karlova, 2006. Suche in Google Scholar

[4] N. Hindman, Finite sums from sequences within cells of a partition of N, J. Combin. Theory Ser. A 17 (1974), 1–11. 10.1016/0097-3165(74)90023-5Suche in Google Scholar

[5] M. Hrušák and D. Meza-Alcántara, Universal submeasures and ideals, Questions Answers Gen. Topology 31 (2013), no. 2, 65–69. Suche in Google Scholar

[6] P. Klinga, A. Nowik and A. Wąsik, σ-porosity of certain ideals, preprint (2025), https://arxiv.org/abs/2512.07711. Suche in Google Scholar

[7] K. Kowitz, The use of Katětov order in the study of topological spaces and ultrafilters, PhD thesis, University of Gdańsk, 2023. Suche in Google Scholar

[8] K. Mazur, F σ -ideals and ω 1 ω 1 * -gaps in the Boolean algebras P ( ω ) / I , Fund. Math. 138 (1991), no. 2, 103–111. 10.4064/fm-138-2-103-111Suche in Google Scholar

[9] A. Nowik and P. Szyszkowska, On some relations between ideals of nowhere dense sets in topologies on positive integers, Period. Math. Hungar. 85 (2022), no. 1, 164–170. 10.1007/s10998-021-00426-6Suche in Google Scholar

Received: 2025-05-21
Accepted: 2025-08-30
Published Online: 2025-12-27

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 4.2.2026 von https://www.degruyterbrill.com/document/doi/10.1515/gmj-2025-2094/html
Button zum nach oben scrollen