Startseite On the rotations and limit cycles of solutions to the basic system of equations
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

On the rotations and limit cycles of solutions to the basic system of equations

  • Grigor Barsegian EMAIL logo
Veröffentlicht/Copyright: 3. August 2024
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This article discusses the rotations (windings) of solutions to the basic system of equations y = F 1 ( x , y ) and x = F 2 ( x , y ) . This allows us to return to the topic of known limit cycles from a much broader point of view, in particular, it makes it possible to describe the conditions for the existence of limit cycles.

References

[1] G. Barsegian, A principle related to zeros of real functions, Izv. Nats. Akad. Nauk Armenii Mat. 56 (2021), no. 3, 10–16; translation in J. Contemp. Math. Anal. 56 (2021), no. 3, 113–117. Suche in Google Scholar

[2] G. Barsegian, Knots of plane curves. Applications to ODE, Izv. Nats. Akad. Nauk Armenii Mat. 58 (2023), no. 3, 14–20; translation in J. Contemp. Math. Anal. 58 (2023), no. 3, 137–141. Suche in Google Scholar

[3] G. A. Barsegian, Some interrelated results in different branches of geometry and analysis, Further Progress in Analysis, World Scientific, Hackensack (2009), 3–32. 10.1142/9789812837332_0001Suche in Google Scholar

[4] D. Hilbert, Mathematische probleme, Arch. Math. Phys. 3 (1901), 44–63, 213–237. Suche in Google Scholar

[5] R. Nevanlinna, Eindeutige analytische Funktionen, Springer, Berlin, 1936. 10.1007/978-3-662-41799-7Suche in Google Scholar

[6] L. S. Pontrjagin, Ordinary Differential Equations (in Russian), Izdat. “Nauka”, Moscow, 1965. Suche in Google Scholar

Received: 2023-12-01
Revised: 2024-03-15
Accepted: 2024-03-25
Published Online: 2024-08-03
Published in Print: 2025-02-01

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 21.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/gmj-2024-2042/html
Button zum nach oben scrollen