Startseite Multiplicative Lie-type derivations on standard operator algebras
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Multiplicative Lie-type derivations on standard operator algebras

  • Mohammad Ashraf , Md Shamim Akhter , Mohammad Afajal Ansari und Mohd Shuaib Akhtar EMAIL logo
Veröffentlicht/Copyright: 1. Juni 2023
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Let 𝔄 be a standard operator algebra on a complex Banach space 𝔛 , dim 𝔛 > 1 , and p n ( T 1 , T 2 , , T n ) the ( n - 1 ) th-commutator of elements T 1 , T 2 , , T n 𝔄 . Then every map ξ : 𝔄 𝔄 (not necessarily linear) satisfying ξ ( p n ( T 1 , T 2 , , T n ) ) = i = 1 n p n ( T 1 , T 2 , , T i - 1 , ξ ( T i ) , T i + 1 , , T n ) for all T 1 , T 2 , , T n 𝔄 is of the form ξ = Ω + Γ , where Ω : 𝔄 𝔄 is an additive derivation and Γ : 𝔄 I is a map that vanishes at each ( n - 1 ) th-commutator p n ( T 1 , T 2 , , T n ) for all T 1 , T 2 , , T n 𝔄 . In addition, if the map ξ is linear and satisfies the above relation, then there exist an operator S 𝔄 and a linear map Γ : 𝔄 I satisfying Γ ( p n ( T 1 , T 2 , , T n ) ) = 0 for all T 1 , T 2 , , T n 𝔄 , such that ξ ( T ) = [ T , S ] + Γ ( T ) for all T 𝔄 .

MSC 2020: 16W25; 47B47; 47L10

Funding statement: This research is partially supported by a research grant from NBHM (No. 02011/5/2020 NBHM(R.P.) R&D II/6243) and DST (No. DST/INSPIRE/03/2017/IF170834).

Acknowledgements

The authors would like to express their sincere thanks to the anonymous referee for careful reading of the article and useful suggestions.

References

[1] M. A. Ansari, M. Ashraf and M. S. Akhtar, Lie triple derivations on trivial extension algebras, Bull. Iranian Math. Soc. 48 (2022), no. 4, 1763–1774. 10.1007/s41980-021-00618-3Suche in Google Scholar

[2] M. Ashraf and M. S. Akhtar, Characterizations of Lie triple derivations on generalized matrix algebras, Comm. Algebra 48 (2020), no. 9, 3651–3660. 10.1080/00927872.2020.1743299Suche in Google Scholar

[3] M. Ashraf, M. S. Akhtar and M. A. Ansari, Generalized Lie (Jordan) triple derivations on arbitrary triangular algebras, Bull. Malays. Math. Sci. Soc. 44 (2021), no. 6, 3767–3776. 10.1007/s40840-021-01148-1Suche in Google Scholar

[4] M. Ashraf and A. Jabeen, Nonlinear generalized Lie triple derivation on triangular algebras, Comm. Algebra 45 (2017), no. 10, 4380–4395. 10.1080/00927872.2016.1264586Suche in Google Scholar

[5] Z. Bai and S. Du, The structure of nonlinear Lie derivation on von Neumann algebras, Linear Algebra Appl. 436 (2012), no. 7, 2701–2708. 10.1016/j.laa.2011.11.009Suche in Google Scholar

[6] D. Benkovič, Lie triple derivations of unital algebras with idempotents, Linear Multilinear Algebra 63 (2015), no. 1, 141–165. 10.1080/03081087.2013.851200Suche in Google Scholar

[7] D. Benkovič, Generalized Lie derivations of unital algebras with idempotents, Oper. Matrices 12 (2018), no. 2, 357–367. 10.7153/oam-2018-12-23Suche in Google Scholar

[8] D. Benkovič, Generalized Lie n-derivations of triangular algebras, Comm. Algebra 47 (2019), no. 12, 5294–5302. 10.1080/00927872.2019.1617875Suche in Google Scholar

[9] D. Benkovič and D. Eremita, Multiplicative Lie n-derivations of triangular rings, Linear Algebra Appl. 436 (2012), no. 11, 4223–4240. 10.1016/j.laa.2012.01.022Suche in Google Scholar

[10] L. Chen and J. Zhang, Nonlinear Lie derivations on upper triangular matrices, Linear Multilinear Algebra 56 (2008), no. 6, 725–730. 10.1080/03081080701688119Suche in Google Scholar

[11] P. R. Chernoff, Representations, automorphisms, and derivations of some operator algebras, J. Funct. Anal. 12 (1973), 275–289. 10.1016/0022-1236(73)90080-3Suche in Google Scholar

[12] W.-S. Cheung, Lie derivations of triangular algebras, Linear Multilinear Algebra 51 (2003), no. 3, 299–310. 10.1080/0308108031000096993Suche in Google Scholar

[13] Y. Du and Y. Wang, Lie derivations of generalized matrix algebras, Linear Algebra Appl. 437 (2012), no. 11, 2719–2726. 10.1016/j.laa.2012.06.013Suche in Google Scholar

[14] A. Fošner, F. Wei and Z. Xiao, Nonlinear Lie-type derivations of von Neumann algebras and related topics, Colloq. Math. 132 (2013), no. 1, 53–71. 10.4064/cm132-1-5Suche in Google Scholar

[15] P. R. Halmos, A Hilbert Space Problem Book, 2nd ed., Encyclopedia Math. Appl. 17, Springer, New York, 1982. 10.1007/978-1-4684-9330-6_4Suche in Google Scholar

[16] P. Ji, R. Liu and Y. Zhao, Nonlinear Lie triple derivations of triangular algebras, Linear Multilinear Algebra 60 (2012), no. 10, 1155–1164. 10.1080/03081087.2011.652109Suche in Google Scholar

[17] W. Jing and F. Lu, Lie derivable mappings on prime rings, Linear Multilinear Algebra 60 (2012), no. 2, 167–180. 10.1080/03081087.2011.576343Suche in Google Scholar

[18] W. Lin, Nonlinear generalized Lie n-derivations on triangular algebras, Comm. Algebra 46 (2018), no. 6, 2368–2383. 10.1080/00927872.2017.1383999Suche in Google Scholar

[19] F. Lu, Additivity of Jordan maps on standard operator algebras, Linear Algebra Appl. 357 (2002), 123–131. 10.1016/S0024-3795(02)00367-1Suche in Google Scholar

[20] F. Lu and B. Liu, Lie derivable maps on B ( X ) , J. Math. Anal. Appl. 372 (2010), no. 2, 369–376. 10.1016/j.jmaa.2010.07.002Suche in Google Scholar

[21] W. S. Martindale, III, Lie derivations of primitive rings, Michigan Math. J. 11 (1964), 183–187. 10.1307/mmj/1028999091Suche in Google Scholar

[22] Y. Wang, Lie n-derivations of unital algebras with idempotents, Linear Algebra Appl. 458 (2014), 512–525. 10.1016/j.laa.2014.06.029Suche in Google Scholar

[23] Y. Wang and Y. Wang, Multiplicative Lie n-derivations of generalized matrix algebras, Linear Algebra Appl. 438 (2013), no. 5, 2599–2616. 10.1016/j.laa.2012.10.052Suche in Google Scholar

[24] B. A. Wani, Multiplicative Lie triple derivations on standard operator algebras, Commun. Math. 29 (2021), no. 3, 357–369. 10.2478/cm-2021-0012Suche in Google Scholar

[25] Z. Xiao and F. Wei, Lie triple derivations of triangular algebras, Linear Algebra Appl. 437 (2012), no. 5, 1234–1249. 10.1016/j.laa.2012.04.015Suche in Google Scholar

[26] W. Yu and J. Zhang, Nonlinear Lie derivations of triangular algebras, Linear Algebra Appl. 432 (2010), no. 11, 2953–2960. 10.1016/j.laa.2009.12.042Suche in Google Scholar

[27] W. Yu and J. Zhang, Nonlinear -Lie derivations on factor von Neumann algebras, Linear Algebra Appl. 437 (2012), no. 8, 1979–1991. 10.1016/j.laa.2012.05.032Suche in Google Scholar

Received: 2022-06-02
Revised: 2022-10-12
Accepted: 2022-11-01
Published Online: 2023-06-01
Published in Print: 2023-10-01

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 25.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/gmj-2023-2030/html
Button zum nach oben scrollen