Abstract
A square octagon split ring resonator (SOSRR) based six-band polarization-insensitive metamaterial absorber (MMA) with a high effective medium ratio (EMR), and excellent absorption is proposed in this study. It can be utilized as an S, C, X, and Ku band frequency absorber and as a sensor at 3.34 GHz (S-band). A unique patch has been introduced in the proposed unit cell to achieve high polarization insensitive properties with excellent absorption of 76 %, 82 %, 92 %, 99 %, 98 %, and 98 % respectively under S, C, X, and Ku band frequency spectrum. The distinctive features of this proposed SOSRR unit cell are its simple, unique structure with a high EMR value of 11.12, and polarization-insensitive up to 90° at 3.34, 5.08, 7.95, 11.68, 14.26, and 15.89 GHz respectively. The designed MMA unit cell is fabricated on a loss FR-4 dielectric substrate with an electrical dimension of 0.089λ0 × 0.089λ0. Measurement of absorption value for the unit cell and array structure performance verified by experiment with excellent agreement. The suggested MMA is very attractive for refractive index sensing applications due to several features, including its low profile, excellent angular stability, polarization insensitivity, sensitivity (S), quality factor (QF), and EMR value.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The authors state no conflict of interest.
-
Research funding: None declared.
-
Data availability: Not applicable.
References
[1] S. K. Ranjan and S. Sahoo, “A review of metamaterial-based microwave absorbers and sensors,” J. Electron. Mater., vol. 53, no. 2, pp. 571–595, 2024. https://doi.org/10.1007/s11664-023-10809-9.Suche in Google Scholar
[2] J. Li, et al.., “Full-color enhanced second harmonic generation using rainbow trapping in ultrathin hyperbolic metamaterial,” Nat. Commun., vol. 12, no. 1, p. 6425, 2021. https://doi.org/10.1038/s41467-021-26818-3.Suche in Google Scholar PubMed PubMed Central
[3] Z. Huang, et al.., “High-resolution metalens imaging polarimetry,” Nano Lett., vol. 23, no. 23, pp. 10991–10997, 2023. https://doi.org/10.1021/acs.nanolett.3c03258.Suche in Google Scholar PubMed
[4] Z. Xu, C. Ni, Y. Cheng, L. Dong, and L. Wu, “Photo-excited metasurface for tunable terahertz reflective circular polarization conversion and anomalous beam deflection at two frequencies independently,” Nanomaterials, vol. 13, no. 12, p. 1846, 2023. https://doi.org/10.3390/nano13121846.Suche in Google Scholar PubMed PubMed Central
[5] Y. He, et al.., “Tunable VO2 metasurface for reflective terahertz linear and circular polarization wavefront manipulation at two frequencies independently,” Phys. B Condens. Matter, vol. 681, 2024, Art. no. 415848. https://doi.org/10.1016/j.physb.2024.415848.Suche in Google Scholar
[6] S. S. Pattanayak, S. H. Laskar, and S. Sahoo, “Design and development of banana leaves-based double-layer microwave absorber,” IETE J. Res., vol. 69, no. 2, pp. 924–931, 2023. https://doi.org/10.1080/03772063.2020.1844073.Suche in Google Scholar
[7] S. S. Pattanayak, S. H. Laskar, and S. Sahoo, “Microwave absorption efficiency of double-layer corn husk-based microwave absorber,” J. Mater. Sci. Mater. Electron., vol. 33, no. 8, pp. 5149–5160, 2022. https://doi.org/10.1007/s10854-022-07703-1.Suche in Google Scholar
[8] Y. Cheng, C. Rong, J. Li, F. Chen, H. Luo, and X. Li, “Dual-band terahertz reflective-mode metasurface for the wavefront manipulation of independent linear and circular polarization waves,” J. Opt. Soc. Am. B, vol. 41, no. 2, pp. 341–350, 2024. https://doi.org/10.1364/josab.507437.Suche in Google Scholar
[9] D. X. Ma, Z. Q. Li, K. Tang, Z. L. Gong, J. Y. Shao, and Y. W. Zhong, “Nylons with highly-bright and ultralong organic room-temperature phosphorescence,” Nat. Commun., vol. 15, no. 1, p. 4402, 2024. https://doi.org/10.1038/s41467-024-48836-7.Suche in Google Scholar PubMed PubMed Central
[10] B. Cai, L. Yang, L. Wu, Y. Cheng, and X. Li, “Dual-narrowband terahertz metamaterial absorber based on all-metal vertical ring array for enhanced sensing application,” Phys. Scr., vol. 99, no. 9, 2024, Art. no. 095503. https://doi.org/10.1088/1402-4896/ad65c3.Suche in Google Scholar
[11] W. Yang, et al.., “Efficiency tunable terahertz graphene metasurfaces for reflective single/dual-focusing effects based on Pancharatnam-Berry phase,” Results Phys., vol. 65, 2024, Art. no. 108003. https://doi.org/10.1016/j.rinp.2024.108003.Suche in Google Scholar
[12] M. B. Hossain, M. R. I. Faruque, and M. T. Islam, “Double elliptical resonator based quadruple band metamaterial absorber for EMI shielding applications in microwave regime,” Alexandria Eng. J., vol. 69, pp. 193–206, 2023. https://doi.org/10.1016/j.aej.2023.01.035.Suche in Google Scholar
[13] A. X. Wang, et al.., “Six-band polarization-insensitive perfect metamaterial absorber using L-shaped resonators,” Appl. Phys. A, vol. 25, pp. 1–7, 2019. https://doi.org/10.1007/s00339-019-2568-y.Suche in Google Scholar
[14] Y. Xu, et al.., “Multifunctional metasurfaces for mutispectral infrared detection with radiative cooling,” IEEE Photon. Technol. Lett., vol. 37, no. 1, pp. 53–56, 2024. https://doi.org/10.1109/lpt.2024.3507693.Suche in Google Scholar
[15] Feng, S., et al.., “Tri-band terahertz metamaterial absorber based on structural Ti 3 C 2 T x MXene for enhanced sensing application,” IEEE Sens. J., vol. 24, no. 18, pp. 28889–28896, 2024. https://doi.org/10.1109/jsen.2024.3435731.Suche in Google Scholar
[16] Y. Sun, et al.., “High-gain dual-polarization microstrip antenna based on transmission focusing metasurface,” Materials, vol. 17, no. 15, p. 3730, 2024. https://doi.org/10.3390/ma17153730.Suche in Google Scholar PubMed PubMed Central
[17] P. Jain, et al.., “An ultrathin compact polarization-sensitive triple-band microwave metamaterial absorber,” J. Electron. Mater., vol. 50, no. 3, pp. 1506–1513, 2021. https://doi.org/10.1007/s11664-020-08680-z.Suche in Google Scholar
[18] A. Hossain, M. T. Islam, N. Misran, M. S. Islam, and M. Samsuzzaman, “A mutual coupled spider net-shaped triple split ring resonator based epsilon-negative metamaterials with high effective medium ratio for quad-band microwave applications,” Results Phys., vol. 22, 2021, Art. no. 103902. https://doi.org/10.1016/j.rinp.2021.103902.Suche in Google Scholar
[19] M. S. U. Afsar, et al.., “A new octagonal close ring resonator based dumbbell-shaped tuning fork perfect metamaterial absorber for C-and Ku-band applications,” Micromachines, vol. 13, no. 2, p. 162, 2022. https://doi.org/10.3390/mi13020162.Suche in Google Scholar PubMed PubMed Central
[20] N. J. Bathani and J. M. Rathod, “Analysis of conformal quad band metamaterial absorber design on planar and cylindrical surface,” Prog. Electromagn. Res. M, vol. 103, pp. 37–47, 2021. https://doi.org/10.2528/pierm21051003.Suche in Google Scholar
[21] M. S. U. Afsar, M. R. I. Faruque, S. Abdullah, and K. S. Al-Mugren, “Compact and polarization insensitive satellite band perfect metamaterial absorber for effective electromagnetic communication system,” Materials, vol. 16, no. 13, p. 4776, 2023. https://doi.org/10.3390/ma16134776.Suche in Google Scholar PubMed PubMed Central
[22] M. Deng, et al.., “Dielectric metasurfaces for broadband phase-contrast relief-like imaging,” Nano Lett., vol. 24, no. 46, pp. 14641–14647, 2024. https://doi.org/10.1021/acs.nanolett.4c03695.Suche in Google Scholar PubMed
[23] D. Wang, et al.., “Temperature tunable broadband filter based on hybridized vanadium dioxide (VO2) metasurface,” J. Phys. D: Appl. Phys., vol. 58, no. 3, 2024, Art. no. 035106. https://doi.org/10.1088/1361-6463/ad8895.Suche in Google Scholar
[24] N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett., vol. 100, no. 20, 2008, Art. no. 207402. https://doi.org/10.1103/physrevlett.100.207402.Suche in Google Scholar PubMed
[25] O. Ayop, M. K. A. Rahim, N. A. Murad, and N. A. Samsuri, “Dual-resonant polarization-independent and wide-angle metamaterial absorber in X-band frequency,” Appl. Phys. A, vol. 122, pp. 1–7, 2016. https://doi.org/10.1007/s00339-016-9902-4.Suche in Google Scholar
[26] B. S. Tung, B. X. Khuyen, Y. J. Kim, V. D. Lam, K. W. Kim, and Y. Lee, “Polarization-independent, wide-incident-angle and dual-band perfect absorption, based on near-field coupling in a symmetric metamaterial,” Sci. Rep., vol. 7, no. 1, 2017, Art. no. 11507. https://doi.org/10.1038/s41598-017-11824-7.Suche in Google Scholar PubMed PubMed Central
[27] M. S. Hasan, et al.., “A symmetric plus-shape resonator based dual band perfect metamaterial absorber for Ku band Wireless Applications,” Opt. Mater., vol. 143, 2023, Art. no. 114224. https://doi.org/10.1016/j.optmat.2023.114224.Suche in Google Scholar
[28] M. S. Islam, M. Samsuzzaman, G. K. Beng, N. Misran, N. Amin, and M. T. Islam, “A gap coupled hexagonal split ring resonator based metamaterial for S-band and X-band microwave applications,” IEEE Access, vol. 8, pp. 68239–68253, 2020. https://doi.org/10.1109/access.2020.2985845.Suche in Google Scholar
[29] M. Edries, H. A. Mohamed, S. S. Hekal, M. A. El-Morsy, and H. A. Mansour, “A new compact quad-band metamaterial absorber using interlaced I/square resonators: design, fabrication, and characterization,” IEEE Access, vol. 8, pp. 143723–143733, 2020. https://doi.org/10.1109/access.2020.3009904.Suche in Google Scholar
[30] M. R. Islam, M. T. Islam, M. Moniruzzaman, M. Samsuzzaman, and H. Arshad, “Penta band single negative meta-atom absorber designed on square enclosed star-shaped modified split ring resonator for S-C-X-and Ku-bands microwave applications,” Sci. Rep., vol. 11, no. 1, p. 8784, 2021. https://doi.org/10.1038/s41598-021-87958-6.Suche in Google Scholar PubMed PubMed Central
[31] S. Hossen, A. Alqahtani, I. Hossain, M. T. Islam, M. Moniruzzaman, and M. Samsuzzaman, “Gap coupled symmetric square split ring high EMR resonator-based metamaterial for S-C-and X-bands wireless applications: simulation and experiment,” Opt. Mater., vol. 145, 2023, Art. no. 114389. https://doi.org/10.1016/j.optmat.2023.114389.Suche in Google Scholar
[32] S. Hannan, M. T. Islam, N. M. Sahar, K. Mat, M. E. Chowdhury, and H. Rmili, “Modified-segmented split-ring based polarization and angle-insensitive multi-band metamaterial absorber for X, Ku and K band applications,” IEEE Access, vol. 8, pp. 144051–144063, 2020. https://doi.org/10.1109/access.2020.3013011.Suche in Google Scholar
[33] R. K. Singh and A. Gupta, “A wrenched-square shaped polarization independent and wide angle stable ultra-thin metamaterial absorber for S-band, X-band and Ku-band applications,” AEU Int. J. Electron. Commun., vol. 132, 2021, Art. no. 153648. https://doi.org/10.1016/j.aeue.2021.153648.Suche in Google Scholar
[34] S. Hannan, M. T. Islam, M. R. I. Faruque, and H. Rmili, “Polarization-independent perfect metamaterial absorber for C, X and, Ku band applications,” J. Mater. Res. Technol., vol. 15, pp. 3722–3732, 2021. https://doi.org/10.1016/j.jmrt.2021.10.007.Suche in Google Scholar
[35] M. S. U. Afsar, M. R. I. Faruque, M. B. Hossain, and M. T. Islam, “SRR inspired modified psi shaped perfect metamaterial absorber for C-band application,” J. Magn. Magn Mater., vol. 582, 2023, Art. no. 171010. https://doi.org/10.1016/j.jmmm.2023.171010.Suche in Google Scholar
[36] O. S. Lateef, M. Al-Badri, K. S. L. Al-Badri, and S. A. Mohammed, “Polarization-insensitive Archimedes’-spiral-shaped ultrathin metamaterial absorbers for microwave sensing application,” Sci. Rep., vol. 13, no. 1, 2023, Art. no. 19445. https://doi.org/10.1038/s41598-023-46363-x.Suche in Google Scholar PubMed PubMed Central
[37] M. I. Jahan, M. R. I. Faruque, M. B. Hossain, and S. Abdullah, “An ultra-thin, triple-band, incident angle-insensitive perfect metamaterial absorber,” Materials, vol. 16, no. 4, p. 1623, 2023. https://doi.org/10.3390/ma16041623.Suche in Google Scholar PubMed PubMed Central
[38] M. Moniruzzaman, M. T. Islam, G. Muhammad, M. S. J. Singh, and M. Samsuzzaman, “Quad band metamaterial absorber based on asymmetric circular split ring resonator for multiband microwave applications,” Results Phys., vol. 19, 2020, Art. no. 103467. https://doi.org/10.1016/j.rinp.2020.103467.Suche in Google Scholar
[39] I. Hossain, et al.., “Polarization insensitive split square ring resonator based epsilon-negative and near zero refractive index metamaterial for S, C, and X frequency bands satellite and radar communications,” Sci. Rep., vol. 12, no. 1, p. 9294, 2022. https://doi.org/10.1038/s41598-022-12322-1.Suche in Google Scholar PubMed PubMed Central
[40] A. A. M. Rahman, et al.., “H-shaped modifiers loaded mirror symmetric resonator based double negative metamaterial for multi-band wireless communications,” Sci. Rep., vol. 13, no. 1, 2023, Art. no. 15943. https://doi.org/10.1038/s41598-023-43182-y.Suche in Google Scholar PubMed PubMed Central
[41] H. Alsaif, M. R. Islam, A. Hoque, M. S. Soliman, M. S. Islam, and M. T. Islam, “Dual circular complementary split ring resonator based metamaterial sensor with high sensitivity and quality factor for textile material detection,” APL Mater., vol. 12, no. 3, 2024. https://doi.org/10.1063/5.0196472.Suche in Google Scholar
[42] K. Errajraji, N. Jebbor, S. Das, T. Islam, B. T. P. Madhav, and T. El-Arrouch, “Design and analysis of a multi-band miniaturized metamaterial absorber for wireless communication applications,” Opt. Quantum Electron., vol. 56, no. 2, p. 232, 2024. https://doi.org/10.1007/s11082-023-05813-6.Suche in Google Scholar
[43] M. S. Uddin Afsar, M. R. Iqbal Faruque, S. Abdullah, and M. T. Islam, “Royal crown shaped polarization insensitive perfect metamaterial absorber for C-X-and Ku-band applications,” Comput. Mater. Contin., vol. 76, no. 1, 2023. https://doi.org/10.32604/cmc.2023.036655.Suche in Google Scholar
[44] N. Ullah, M. S. Islam, A. Hoque, W. H. Yong, M. S. Soliman, and M. T. Islam, “A compact-sized four-band metamaterial-based perfect absorber for electromagnetic energy harvesting applications,” Opt Laser. Technol., vol. 168, 2024, Art. no. 109836. https://doi.org/10.1016/j.optlastec.2023.109836.Suche in Google Scholar
[45] S. Hannan, M. T. Islam, A. F. Almutairi, and M. R. I. Faruque, “Wide bandwidth angle-and polarization-insensitive symmetric metamaterial absorber for X and Ku band applications,” Sci. Rep., vol. 10, no. 1, 2020, Art. no. 10338. https://doi.org/10.1038/s41598-020-67262-5.Suche in Google Scholar PubMed PubMed Central
[46] M. G. Rabbani, et al.., “Orthogonal centre ring field optimization triple-band metamaterial absorber with sensing application,” Eng. Sci. Technol. Int. J., vol. 49, 2024, Art. no. 101588. https://doi.org/10.1016/j.jestch.2023.101588.Suche in Google Scholar
[47] B. Ajewole, P. Kumar, and T. Afullo, “I-shaped metamaterial using SRR for multi-band wireless communication,” Crystals, vol. 12, no. 4, p. 559, 2022. https://doi.org/10.3390/cryst12040559.Suche in Google Scholar
[48] M. S. U. Afsar, M. R. I. Faruque, S. Abdullah, and M. J. Hossain, “Rotational symmetric solar system shaped triple band perfect metamaterial absorber for S-C-and X-band application,” Sens. Actuators, A, vol. 365, 2024, Art. no. 114839. https://doi.org/10.1016/j.sna.2023.114839.Suche in Google Scholar
[49] S. Kalraiya, R. K. Chaudhary, and R. K. Gangwar, “Polarization independent triple band ultrathin conformal metamaterial absorber for C-and X-frequency bands,” AEU Int. J. Electron. Commun., vol. 135, 2021, Art. no. 153752. https://doi.org/10.1016/j.aeue.2021.153752.Suche in Google Scholar
[50] S. K. Ranjan and S. Sahoo, “Hexagon enclosed modified G-shaped polarization and incident angle independent metamaterial absorber for S, C, X and Ku band frequency,” AEU Int. J. Electron. Commun., 2024, Art. no. 155348. https://doi.org/10.1016/j.aeue.2024.155348.Suche in Google Scholar
[51] M. M. K. Nipun, et al.., “Interconnected circular ring resonator based single negative perfect metamaterial absorber for wireless communication systems,” Opt. Quantum Electron., vol. 56, no. 6, pp. 1–20, 2024. https://doi.org/10.1007/s11082-024-06995-3.Suche in Google Scholar
[52] M. M. Hasan, et al.., “Polarization insensitive dual band metamaterial with absorptance for 5G sub-6 GHz applications,” Sci. Rep., vol. 12, no. 1, p. 8495, 2022. https://doi.org/10.1038/s41598-022-12106-7.Suche in Google Scholar PubMed PubMed Central
[53] L. Dewangan, N. K. Mishra, and S. Ghosh, “Angularly stable high-Q factor metamaterial absorber for Bio-medical sensing applications,” IEEE Sens. Lett., vol. 8, pp. 3501904–3501907, 2024. https://doi.org/10.1109/lsens.2024.3414337.Suche in Google Scholar
[54] B. Khodadadi, M. Babaeinik, V. Ghods, and P. Rezaei, “Triple-band metamaterial perfect absorber for refractive index sensing in THz frequency,” Opt. Quantum Electron., vol. 55, no. 5, p. 431, 2023. https://doi.org/10.1007/s11082-023-04684-1.Suche in Google Scholar
[55] M. L. Hakim, et al.., “Polarization insensitive symmetrical structured double negative (DNG) metamaterial absorber for Ku-band sensing applications,” Sci. Rep., vol. 12, no. 1, p. 479, 2022. https://doi.org/10.1038/s41598-021-04236-1.Suche in Google Scholar PubMed PubMed Central
© 2025 Walter de Gruyter GmbH, Berlin/Boston