Startseite A comprehensive study about low-cost and limited bandwidth FMCW bio-radar: detailed analyses on vital signs measurements
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A comprehensive study about low-cost and limited bandwidth FMCW bio-radar: detailed analyses on vital signs measurements

  • Ibrahim Seflek EMAIL logo und Ercan Yaldiz
Veröffentlicht/Copyright: 18. April 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this study, a bio-radar system has been constituted using a frequency modulated continuous wave (FMCW) radar with low cost and limited bandwidth, taking into account of the lack of range the continuous wave (CW) radar. The displacement and vibration frequencies have been determined at a distance of 3.5–5 m for single and multiple targets via the help of the target test mechanism. Then, the detection of vital signs has been achieved with healthy human subject measurements. For a single human subject, respiration rate (RR) errors at 3.5 m and 5 m distances are 4% and 4.42%, respectively, and 13.25% and 15.16% for heartbeat rate (HR). In multiple targets measurements, although targets do not create an obstacle to each other, a slight deterioration has been observed in the signals and the error rates increase. The results show that bio-radar have a promising future to replace contact devices in medical applications.


Corresponding author: Ibrahim Seflek, Electrical and Electronics Engineering Department, Konya Technical University, Selçuklu, Konya, 42250, Turkey, E-mail:

Funding source: Academic Staff Training Program of Konya Technical University

Award Identifier / Grant number: [2017-OYP-028]

Acknowledgments

In addition, the authors would like to thank all volunteers who participated in the experiments as targets.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work is supported by the Academic Staff Training Program [2017-OYP-028] of Konya Technical University.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] M. I. Skolnik, Introduction to Radar Systems, New York, McGraw-Hill, 1980.Suche in Google Scholar

[2] S. Jeng, W. Chieng, and H. Lu, “Estimating speed using a side-looking single-radar vehicle detector,” IEEE Trans. Intell. Transport. Syst., vol. 15, pp. 607–614, 2013. https://doi.org/10.1109/TITS.2013.2283528.Suche in Google Scholar

[3] B. Park, J. Kim, J. Lee, M. S. Kang, and Y. K. An, “Underground object classification for urban roads using instantaneous phase analysis of Ground-Penetrating Radar (GPR) data,” Rem. Sens., vol. 10, p. 1417, 2018. https://doi.org/10.3390/rs10091417.Suche in Google Scholar

[4] K. M. Chen, Y. Huang, J. Zhang, and A. Norman, “Microwave life-detection systems for searching human subjects under earthquake rubble or behind barrier,” IEEE Trans. Biomed. Eng., vol. 47, pp. 105–114, 2000. https://doi.org/10.1109/10.817625.Suche in Google Scholar PubMed

[5] R. Rollenbeck and J. Bendix, “Rainfall distribution in the Andes of southern Ecuador derived from blending weather radar data and meteorological field observations,” Atmos. Res., vol. 99, pp. 277–289, 2011. https://doi.org/10.1016/j.atmosres.2010.10.018.Suche in Google Scholar

[6] A. Droitcour, V. Lubecke, J. Lin, and O. Boric-Lubecke, “A microwave radio for Doppler radar sensing of vital signs,” in IEEE MTT-S International Microwave Symposium Digest (Cat. No. 01CH37157), 2001, pp. 175–178. https://doi.org/10.1109/MWSYM.2001.966866.Suche in Google Scholar

[7] B. K. Park, O. Boric-Lubecke, and V. M. Lubecke, “Arctangent demodulation with DC offset compensation in quadrature Doppler radar receiver systems,” IEEE Trans. Microw. Theor. Tech., vol. 55, pp. 1073–1079, 2007. https://doi.org/10.1109/tmtt.2007.895653.Suche in Google Scholar

[8] L. Anitori, A. De Jong, and F. Nennie, “FMCW radar for life-sign detection,” in IEEE Radar Conference, 2009, pp. 1–6. https://doi.org/10.1109/radar.2009.4976934.Suche in Google Scholar

[9] D. Zito, D. Pepe, M. Mincica, et al.., “SoC CMOS UWB pulse radar sensor for contactless respiratory rate monitoring,” IEEE Trans. Biomed. Circ. Syst., vol. 5, pp. 503–510, 2011. https://doi.org/10.1109/tbcas.2011.2176937.Suche in Google Scholar PubMed

[10] L. Liu and S. Liu, “Remote detection of human vital sign with stepped-frequency continuous wave radar,” IEEE J. Sel. Top. Appl. Earth Obs. Rem. Sens., vol. 7, pp. 775–782, 2014. https://doi.org/10.1109/jstars.2014.2306995.Suche in Google Scholar

[11] J. Kuutti, M. Paukkunen, M. Aalto, P. Eskelinen, and R. E. Sepponen, “Evaluation of a Doppler radar sensor system for vital signs detection and activity monitoring in a radio-frequency shielded room,” Measurement, vol. 68, pp. 135–142, 2015. https://doi.org/10.1016/j.measurement.2015.02.048.Suche in Google Scholar

[12] S. Wang, A. Pohl, T. Jaeschke, et al.., “A novel ultra-wideband 80 GHz FMCW radar system for contactless monitoring of vital signs,” in 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2015, pp. 4978–4981. https://doi.org/10.1109/EMBC.2015.7319509.Suche in Google Scholar PubMed

[13] N. Andersen, K. Granhaug, A. J. Michaelsen, et al.., “A 118-mW pulse-based radar SoC in 55-nm CMOS for non-contact human vital signs detection,” IEEE J. Solid State Circ., vol. 52, pp. 3421–3433, 2017. https://doi.org/10.1109/jssc.2017.2764051.Suche in Google Scholar

[14] B. J. Jang, S. H. Wi, J. G. Yook, M. Q. Lee, and K. J. Lee, “Wireless bio-radar sensor for heartbeat and respiration detection,” Electromagn. Waves, vol. 5, pp. 149–168, 2008.Suche in Google Scholar

[15] S. S. Myoung, J. H. Park, J. G. Yook, and B. J. Jang, “2.4 GHz bio-radar system with improved performance by using phase-locked loop,” Microw. Opt. Technol. Lett., vol. 52, pp. 2074–2076, 2010. https://doi.org/10.1002/mop.25366.Suche in Google Scholar

[16] J. D. Kim, W. H. Lee, Y. Lee, et al.., “Non-contact respiration monitoring using impulse radio ultrawideband radar in neonates,” Royal Soc. Open Sci., vol. 6, p. 190149, 2019. https://doi.org/10.1098/rsos.190149.Suche in Google Scholar PubMed PubMed Central

[17] P. Mazurek, J. Wagner, A. Miękina, and R. Z. Morawski, “Comparison of sixteen methods for fusion of data from impulse-radar sensors and depth sensors applied for monitoring of elderly persons,” Measurement, vol. 154, p. 107455, 2020. https://doi.org/10.1016/j.measurement.2019.107455.Suche in Google Scholar

[18] Q. Wu, Y. D. Zhang, W. Tao, and M. G. Amin, “Radar-based fall detection based on Doppler time–frequency signatures for assisted living, IET Radar,” Sonar Navig., vol. 9, pp. 164–172, 2015. https://doi.org/10.1049/iet-rsn.2014.0250.Suche in Google Scholar

[19] F. Lin, Y. Zhuang, C. Song, et al.., “SleepSense: a noncontact and cost-effective sleep monitoring system,” IEEE Trans. Biomed. Circ. Syst., vol. 11, pp. 189–202, 2016. https://doi.org/10.1109/TBCAS.2016.2541680.Suche in Google Scholar PubMed

[20] S. Toften, S. Pallesen, M. Hrozanova, F. Moen, and J. Grønli, “Validation of sleep stage classification using non-contact radar technology and machine learning (Somnofy®),” Sleep Med., vol. 75, pp. 54–61, 2020. https://doi.org/10.1016/j.sleep.2020.02.022.Suche in Google Scholar PubMed

[21] J. C. Lin, “Noninvasive microwave measurement of respiration,” Proc. IEEE, vol. 63, p. 1530, 1975. https://doi.org/10.1109/proc.1975.9992.Suche in Google Scholar

[22] A. D. Droitcour, O. Boric-Lubecke, V. M. Lubecke, J. Lin, and G. T. Kovacs, “Range correlation and I/Q performance benefits in single-chip silicon Doppler radars for noncontact cardiopulmonary monitoring,” IEEE Trans. Microw. Theor. Tech., vol. 52, pp. 838–848, 2004. https://doi.org/10.1109/tmtt.2004.823552.Suche in Google Scholar

[23] T. Hall, N. A. Malone, J. Tsay, et al.., “Long-term vital sign measurement using a non-contact vital sign sensor inside an office cubicle setting,” in 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2016, pp. 4845–4848.10.1109/EMBC.2016.7591812Suche in Google Scholar PubMed

[24] F. Quaiyum, L. Ren, S. Nahar, F. Foroughian, and A. E. Fathy, “Development of a reconfigurable low cost multi-mode radar system for contactless vital signs detection,” in IEEE MTT-S International Microwave Symposium (IMS), 2017, pp. 1245–1247.10.1109/MWSYM.2017.8058832Suche in Google Scholar

[25] R. Vasireddy, C. Roth, J. Mathis, J. Goette, M. Jacomet, and A. Vogt, “K-band Doppler radar for contact-less overnight sleep marker assessment: a pilot validation study,” J. Clin. Monit. Comput., vol. 32, pp. 729–740, 2018. https://doi.org/10.1007/s10877-017-0060-9.Suche in Google Scholar PubMed

[26] I. Seflek, Y. E. Acar, and E. Yaldiz, “Small motion detection and non-contact vital signs monitoring with continuous wave Doppler radars,” Elektronika ir Elektrotechnika, vol. 26, pp. 54–60, 2020. https://doi.org/10.5755/j01.eie.26.3.25810.Suche in Google Scholar

[27] I. Seflek and E. Yaldiz, “Contactless vital signs measurement with low cost continuous wave Doppler radar,” Konya J. Eng. Sci., vol. 8, pp. 9–14, 2020. https://doi.org/10.36306/konjes.822187.Suche in Google Scholar

[28] F. Khan and S. H. Cho, “A detailed algorithm for vital sign monitoring of a stationary/non-stationary human through IR-UWB radar,” Sensors, vol. 17, p. 290, 2017. https://doi.org/10.3390/s17020290.Suche in Google Scholar PubMed PubMed Central

[29] M. Amin, Radar for Indoor Monitoring: Detection, Classification, and Assessment, FL, USA, CRC Press, 2017.10.1201/9781315155340Suche in Google Scholar

[30] L. Anishchenko, M. Alekhin, A. Tataraidze, S. Ivashov, Alexander S. Bugaev, and F. Soldovieri, “Application of step-frequency radars in medicine,” in Proc. SPIE 9077, Radar Sensor Technology XVIII, Baltimore, Maryland, USA, 2014, p. 90771N.10.1117/12.2049523Suche in Google Scholar

[31] S. Nahar, T. Phan, F. Quaiyum, L. Ren, A. E. Fathy, and O. Kilic, “An electromagnetic model of human vital signs detection and its experimental validation,” IEEE J. Emerg. Sel. Top. Circ. Syst., vol. 8, pp. 338–349, 2018. https://doi.org/10.1109/jetcas.2018.2811339.Suche in Google Scholar

[32] W. Su, M. Tang, R. E. Arif, T. Horng, and F. Wang, “Stepped-frequency continuous wave radar with self-injection-locking technology for monitoring multiple human vital signs,” IEEE Trans. Microw. Theor. Tech., vol. 67, pp. 1–10, 2019. https://doi.org/10.1109/tmtt.2019.2933199.Suche in Google Scholar

[33] Y. E. Acar, I. Saritas, and E. Yaldiz, “An experimental study: detecting the respiration rates of multiple stationary human targets by stepped frequency continuous wave radar,” Measurement, vol. 167, 2021, Art no. 108268. https://doi.org/10.1016/j.measurement.2020.108268.Suche in Google Scholar

[34] G. Wang, J. Munoz-Ferreras, C. Gu, C. Li, and R. Gomez-Garcia, “Application of linear-frequency-modulated continuous-wave (LFMCW) radars for tracking of vital signs,” IEEE Trans. Microw. Theor. Tech., vol. 62, pp. 1387–1399, 2014. https://doi.org/10.1109/tmtt.2014.2320464.Suche in Google Scholar

[35] H. Lee, B. H. Kim, J. K. Park, S. W. Kim, and J. G. Yook, “A resolution enhancement technique for remote monitoring of the vital signs of multiple subjects using a 24 GHz bandwidth-limited FMCW radar,” IEEE Access, vol. 8, pp. 1240–1248, 2019. https://doi.org/10.1109/ACCESS.2019.2961130.Suche in Google Scholar

[36] M. Alizadeh, G. Shaker, J. C. M. De Almeida, P. P. Morita, and S. Safavi-Naeini, “Remote monitoring of human vital signs using mm-wave FMCW radar,” IEEE Access, vol. 7, pp. 54958–54968, 2019. https://doi.org/10.1109/access.2019.2912956.Suche in Google Scholar

[37] M. Mercuri, I. R. Lorato, Y. H. Liu, F. Wieringa, C. V. Hoof, and T. Torfs, “Vital-sign monitoring and spatial tracking of multiple people using a contactless radar-based sensor,” Nat. Electron., vol. 2, pp. 252–262, 2019. https://doi.org/10.1038/s41928-019-0258-6.Suche in Google Scholar

[38] Y. Wang, W. Wang, M. Zhou, A. Ren, and Z. Tian, “Remote monitoring of human vital signs based on 77-GHz mm-wave FMCW radar,” Sensors, vol. 20, p. 2999, 2020. https://doi.org/10.3390/s20102999.Suche in Google Scholar PubMed PubMed Central

[39] L. Sun, S. Huang, Y. Li, et al.., “Remote measurement of human vital signs based on joint-range adaptive EEMD,” IEEE Access, vol. 8, pp. 68514–68524, 2020. https://doi.org/10.1109/access.2020.2985286.Suche in Google Scholar

[40] S. M. Islam, N. Motoyama, S. Pacheco, and V. M. Lubecke, “Non-contact vital signs monitoring for multiple subjects using a millimeter wave FMCW automotive radar,”in IEEE/MTT-S International Microwave Symposium (IMS), 2020, pp. 783–786.10.1109/IMS30576.2020.9223838Suche in Google Scholar

[41] S. M. Islam, E. Yavari, A. Rahman, V. M. Lubecke, and O. Boric-Lubecke, “Separation of respiratory signatures for multiple subjects using independent component analysis with the JADE algorithm,” in 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2018, pp. 1234–1237.10.1109/EMBC.2018.8512583Suche in Google Scholar PubMed

[42] S. M. Islam, O. Boric-Lubecke, and V. M. Lubekce, “Concurrent respiration monitoring of multiple subjects by phase-comparison monopulse radar using independent component analysis (ICA) with JADE algorithm and direction of arrival (DOA),” IEEE Access, vol. 8, pp. 73558–73569, 2020. https://doi.org/10.1109/access.2020.2988038.Suche in Google Scholar

[43] S. M. Islam and V. M. Lubecke, “Extracting individual respiratory signatures from combined multi-subject mixtures with varied breathing pattern using independent component analysis with the JADE algorithm,” in IEEE Asia-Pacific Microwave Conference (APMC), 2020, pp. 734–736.10.1109/APMC47863.2020.9331715Suche in Google Scholar

[44] L. N. Anishchenko, “Independent component analysis in bioradar data processing,” in Electromagnetic Research Symposium (PIERS), 2016, pp. 2206–2210.10.1109/PIERS.2016.7734912Suche in Google Scholar

[45] X. Hu and T. Jin, “Short-range vital signs sensing based on EEMD and CWT using IR-UWB radar,” Sensors, vol. 16, p. 2025, 2016. https://doi.org/10.3390/s16122025.Suche in Google Scholar PubMed PubMed Central

[46] C. Li and J. Lin, “Random body movement cancellation in Doppler radar vital sign detection,” IEEE Trans. Microw. Theor. Tech., vol. 56, pp. 3143–3152, 2008. https://doi.org/10.1109/tmtt.2008.2007139.Suche in Google Scholar

[47] T. Hall, D. Y. Lie, T. Q. Nguyen, et al.., “Non-contact sensor for long-term continuous vital signs monitoring: a review on intelligent phased-array Doppler sensor design,” Sensors, vol. 17, p. 2632, 2017.https://doi.org/10.3390/s17112632.Suche in Google Scholar PubMed PubMed Central

[48] O. Boric-Lubecke, V. M. Lubecke, A. D. Droitcour, B. K. Park, and A. Singh, Doppler Radar Physiological Sensing, NJ, USA, IEEE, Wiley, 2016.10.1002/9781119078418Suche in Google Scholar

[49] M. He, Y. Nian, and B. Liu, “Noncontact heart beat signal extraction based on wavelet transform,” in 8th International Conference on Biomedical Engineering and Informatics (BMEI), 2015, pp. 209–213.10.1109/BMEI.2015.7401502Suche in Google Scholar

[50] A. Tariq and H. Ghafouri-Shiraz, “Vital signs detection using Doppler radar and continuous wavelet transform,” in Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP), 2011, pp. 285–288.Suche in Google Scholar

[51] M. Ritchie, M. Ash, Q. Chen, and K. Chetty, “Through wall radar classification of human micro-Doppler using singular value decomposition analysis,” Sensors, vol. 16, p. 1401, 2016. https://doi.org/10.3390/s16091401.Suche in Google Scholar PubMed PubMed Central

[52] P. Wang, F. Qi, M. Liu, et al.., “Noncontact heart rate measurement based on an improved convolutional sparse coding method using IR-UWB radar,” IEEE Access, vol. 7, pp. 158492–158502, 2019. https://doi.org/10.1109/access.2019.2950423.Suche in Google Scholar

[53] S. Rao, Introduction to mmWave Sensing: FMCW Radars, Texas Instrum. (TI) mmWave Train. Ser, 2017.Suche in Google Scholar

[54] Y. Jin, B. Kim, S. Kim, and J. Lee, “Design and implementation of FMCW surveillance radar based on dual chirps,” Elektronika ir Elektrotechnika, vol. 24, pp. 60–66, 2018. https://doi.org/10.5755/j01.eie.24.6.22292.Suche in Google Scholar

[55] RFbeam Microwave GmbH, K-LC6 Radar Transceiver, Revision-B, 2012. Available at: https://www.rfbeam.ch/files/products/12/downloads/Datasheet_K-LC6.pdf [accessed 03, 2021].Suche in Google Scholar

[56] Digilent, Nexys4 DDR™ FPGA Board Reference Manual, 2016. Available at: https://reference.digilentinc.com/_media/nexys4-ddr:nexys4ddr_rm.pdf [accessed 03, 2021].Suche in Google Scholar

[57] Measurement Computing, USB-1608G Series 16-Bit High-Speed Multifunction DAQ Devices, 2018. Available at: https://www.mccdaq.com/PDFs/specs/USB-1608G-Series-data.pdf [accessed 03, 2021].Suche in Google Scholar

Received: 2021-10-15
Accepted: 2022-03-17
Published Online: 2022-04-18
Published in Print: 2022-10-26

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 24.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/freq-2021-0241/html
Button zum nach oben scrollen