Startseite Textile UWB antenna performance for healthcare monitoring system
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Textile UWB antenna performance for healthcare monitoring system

  • Parameswari Subbian ORCID logo EMAIL logo , Chitra Chinnasamy ORCID logo und Kannadhasan Suriyan ORCID logo
Veröffentlicht/Copyright: 15. März 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

A unique metamaterial-based UWB band notched textile antenna for Body Area Network (BAN) is created in this paper, with an operational frequency range of 3–11 GHz, spanning the Ultra Wide Band (UWB) band (3.1–10.6 GHz). Using the textile material Jeans, which has a permittivity of 1.67, the antenna’s size is lowered. To enhance the impedance bandwidth, the ground plane is made of partially conductive material and is rectangular. The hexagonal slot is used to increase the electric field dispersion along the borders of the hexagonal slot, which improves bandwidth. The gain of the UWB of the antenna maximum is obtained at 7.52 dB and minimum is obtained at 5.25 dB. The VSWR of the UWB of the antenna maximum is obtained at 1.92 and minimum is obtained at 1.45. The fabrication uses a Denim substrate with a thickness of 1 mm and a microstrip feed. The designed antenna is investigated for its return loss and gain characteristics.


Corresponding author: Parameswari Subbian, Department of Electronics and Communication Engineering, Kalasalingam Institute of Technology, Krishnankoil, Tamilnadu 626126, India, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] A. Lai, C. Caloz, and T. Itoh, “Composite right/left-handed transmission line metamaterials,” IEEE Microw. Mag., vol. 5, no. 3, pp. 34–50, 2004, https://doi.org/10.1109/mmw.2004.1337766.Suche in Google Scholar

[2] H. Laure, M. Koubeissi, M. Mouhamadou, et al.., “Compact and multiband dielectric resonator antenna with pattern diversity for multistandard mobile handheld devices,” IEEE Trans. Antenn. Propag., vol. 59, no. 11, 2011. https://doi.org/10.1109/TAP.2011.2164183.10.1109/TAP.2011.2164183Suche in Google Scholar

[3] J. Won-Gyu and J.-H. Choi, “Design of a wide and multiband aperture-stacked patch antenna with reflector,” Microw. Opt. Technol. Lett., vol. 49, pp. 2822–2824, 2007, https://doi.org/10.1002/mop.22876.Suche in Google Scholar

[4] R. W. Ziolkowski and A. Erentok, “Metamaterial-inspired efficient electrically small antennas,” IEEE Trans. Antenn. Propag., vol. 56, no. 3, pp. 691–707, 2008, https://doi.org/10.1109/TAP.2008.916949.Suche in Google Scholar

[5] M. Alibakhshi-Kenari, “Introducing the new wideband small plate antennas with engraved voids to form new geometries based on CRLH MTM-TLs for wireless applications,” Int. J. Microw. Wirel. Technol., vol. 6, no. 6, pp. 629–637, 2014, https://doi.org/10.1017/S1759078714000099.Suche in Google Scholar

[6] L. A. Yimdjo Poffelie, P. J. Soh, Sen, Y., and G. A. E. Vandenbosch, “A high-fidelity all-textile UWB antenna with low back radiation for off-body WBAN applications,” IEEE Trans. Antenn. Propag., vol. 64, no. 2, pp. 757–760, 2016, https://doi.org/10.1109/tap.2015.2510035.Suche in Google Scholar

[7] M. Alibakhshikenari, B. S. Virdee, L. Azpilicueta, et al.., “A comprehensive survey of “metamaterial transmission-line based antennas: design, challenges, and applications”,” IEEE Access, vol. 8, pp. 144778–144808, 2020, https://doi.org/10.1109/ACCESS.2020.3013698.Suche in Google Scholar

[8] K. Jaiswal, S. Yadav, N. Yadav, and R. Suchit Yadav, “Analysis of different feeding techniques of butterfly-shaped patch antenna with defected ground for UWB application,” IETE J. Res., vol. 2020, pp. 1–10, 2020, https://doi.org/10.1080/03772063.2020.1773947.Suche in Google Scholar

[9] G. Geetharamani and T. Aathmanesan, “A metamaterial inspired tapered patch antenna for WLAN/WiMAX applications,” Wireless Pers. Commun., vol. 113, no. 11, 2020, https://doi.org/10.1007/s11277-020-07283-5.Suche in Google Scholar

[10] S. Abdi Tazehabadi and S. Jam, “X-band reflectarray antenna with arbitrarily (elliptical) polarization for high-power microwave applications, engineering science and technology,” Int. J. Antennas Wave Propag., vol. 11, no. 5, 2019, https://doi.org/10.1016/j.jestch.2019.08.004.Suche in Google Scholar

[11] A. Kiourti, J. L. Volakis, R. B. V. B. Simorangkir, and S. M. Abbas, “UWB antennas on conductive textiles,” in 2016 International Symposium on Antennas and Propagation (APSURSI), pp. 1941–1942.10.1109/APS.2016.7696677Suche in Google Scholar

[12] K. Shikder and F. Arifin, “A novel UWB wearable icon-type textile antenna for WBAN applications,” in International Conference on Electrical, Computer and Communication Engineering (ECCE), February 16–18, 2017.10.1109/ECACE.2017.7913028Suche in Google Scholar

[13] S. Lemey, F. Declercq, and H. Rogier, “Textile antennas as hybrid energy-harvesting platforms,” Proc. IEEE, vol. 102, no. 11, pp. 1833–1857, 2014, https://doi.org/10.1109/jproc.2014.2355872.Suche in Google Scholar

[14] T. H. Lin, J. Bito, G. D. Hester, J. Kimionis, R. A. Bahr, and M. M. Tentzeris, “On-body long-range wireless backscattering sensing system using Inkjet-/3-D printed flexible ambient RF energy harvesters capable of simultaneous DC and harmonics generation,” IEEE Trans. Microw. Theor. Tech., vol. 65, no. 12, pp. 5389–5400, 2017, https://doi.org/10.1109/tmtt.2017.2768033.Suche in Google Scholar

[15] S. Lemey, S. Agneessens, P. V. Torre, K. Baes, J. Vanfleteren, and H. Rogier, “Wearable flexible lightweight modular RFID tag with integrated energy harvester,” IEEE Trans. Microw. Theor. Tech., vol. 64, no. 7, pp. 2304–2314, 2016, https://doi.org/10.1109/tmtt.2016.2573274.Suche in Google Scholar

[16] L. W. Liu, A. Kandwal, H. Shi, and Q. S. Cheng, “Wireless power transfer using an RF plasma,” IEEE Access, vol. 6, pp. 73905–73915, 2018, https://doi.org/10.1109/access.2018.2883486.Suche in Google Scholar

[17] B. Anandhi Meena, P. Thiruvalar Selvan, and S. Raghavan, “Compact metamaterial antenna with high directivity for bio-medical systems,” Circ. Syst., vol. 7, pp. 4036–4045, 2016, https://doi.org/10.4236/cs.2016.712334.Suche in Google Scholar

[18] B. Anandhi Meena, P. Thiruvalar Selvan, B. Nagaraj, S. Raghavan, S. Suganthi, and V. Karthiyayini, “Novel splitring resonator antennas for biomedical application,” J. Pure Appl. Microbiol. Spec. Issue Recent Res. Chall. Bio-Med. Appl., vol. 9, pp. 235–242, 2015.Suche in Google Scholar

[19] B. Anandhi Meena, P. Thiruvalar Selvan, S. Raghavan, and S. Suganthi, “Design of CSRR embedded metamaterial monopole antenna for WiMAX applications,” ARPN Int. J. Eng. Appl. Sci., vol. 10, no. 5, pp. 2214–2216, 2015.Suche in Google Scholar

[20] B. Anandhi Meena, P. Thiruvalar Selvan, S. Raghavan, S. Suganthi, and S. Sindhiya, “Effect of ground plane structures in metamaterial inspired monopole antenna,” Int. Natl. J. Appl. Eng. Res., vol. 10, no. 5, pp. 4777–4780, 2015.Suche in Google Scholar

[21] M. Alibakhshi-Kenari, M. Naser-Moghadasi, R. Ali Sadeghzadeh, B. S. Virdee, and E. Limiti, “Periodic array of complementary artificial magnetic conductor metamaterials-based multiband antennas for broadband wireless transceivers,” https://doi.org/10.1049/iet-map.2016.0069.Suche in Google Scholar

[22] M. Alibakhshi-Kenari, M. Naser-Moghadasi, R. A. Sadeghzadeh, B. S. Virdee, and E. Limiti, “Bandwidth extension of planar antennas using embedded slits for reliable multiband RF communications,” Int. J. Electron. Commun., vol. 70, no. 7, pp. 910–919, 2016, https://doi.org/10.1016/j.aeue.2016.04.003.Suche in Google Scholar

[23] Dr. K. Meena alias Jeyanthi, E. Thangaselvi, and A. S. Prianga, “Simulation of rectangular microstrip antenna using nylon fabric material,” Int. J. Emerg. Technol. Adv. Eng., vol. 3, no. 1, pp. 645–647, 2013.Suche in Google Scholar

[24] S. Maria Glammi and K. Meena Alias Jeyanthi, “Design of wide band and rectangular microstrip patch antenna for breast tumor detection,” Int. J. Recent Technol. Eng., vol. 7, no. 5S3, pp. 2277–3878, 2019.Suche in Google Scholar

[25] S. Kannadhasan and R. Nagarajan, “Development of an H-shaped antenna with FR4 for 1-10GHz wireless communications,” Textil. Res. J., vol. 91, pp. 15–16, 2021, https://doi.org/10.1177/00405175211003167.Suche in Google Scholar

[26] M. Klemm, and G. Troester, “Textile UWB antennas for wireless body area networks,” IEEE Trans. Antenn. Propag., vol. 54, no. 11, pp. 3192–3197, 2006, https://doi.org/10.1109/tap.2006.883978.Suche in Google Scholar

[27] S. A. Holland, D. Baiya, E. Elkhouly, and A. E. Fathy, “Ultra wideband textile antenna development for indoor localization,” in IEEE MTT-S International Microwave Symposium Digest (MTT), 2013.10.1109/MWSYM.2013.6697714Suche in Google Scholar

[28] M. Alibakhshi-Kenari, M. Naser-Moghadasi, R. Ali Sadeghzadeh, B. Singh Virdee, and E. Limiti, “New compact antenna based on simplified CRLH-TL for UWB wireless communication systems,” Int. J. RF Microw. Comput. Aided Eng., vol. 26, no. 3, pp. 217–225, 2016, https://doi.org/10.1002/mmce.20956.Suche in Google Scholar

[29] S. Kannadhasan and R. Nagarajan, “Performance improvement of H-shaped antenna with zener diode for textile applications,” J. Textil. Inst., vol. 91, nos. 15–16, pp. 1687–1697, 2021. https://doi.org/10.1080/00405000.2021.1944523.Suche in Google Scholar

[30] M. Alibakhshi-Kenari and Jaume Anguera, “New compact printed leaky-wave antenna with beam steering,” Microw. Opt. Technol. Lett., vol. 58, no. 1, pp. 215–217, 2016, https://doi.org/10.1002/mop.29538.Suche in Google Scholar

[31] M. Alibakhshikenari, M. Khalily, B. Singh Virdee, C. Hwang See, R. A. Abd-Alhameed, and E. Limiti, “Mutual-coupling isolation using embedded metamaterial EM bandgap decoupling slab for densely packed array antennas,” IEEE Access, vol. 7, pp. 5182–51840, 2019, https://doi.org/10.1109/access.2019.2909950.Suche in Google Scholar

[32] K. Shikder and F. Arifin, “Design and evaluation of a UWB wearable textile antenna for body area network,” in International Conference on Electrical Information and Communication Technology (EICT 2015), 2015, pp. 326–330.10.1109/EICT.2015.7391970Suche in Google Scholar

[33] J. O. Ha, S. H. Jung, M. C. Park, K. H. Lee, and Y. S. Eo, “A fully integrated 3–5 GHz UWB RF transceiver for WBAN applications,” in MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO), 2013.10.1109/IMWS-BIO.2013.6756237Suche in Google Scholar

Received: 2021-10-04
Accepted: 2022-02-22
Published Online: 2022-03-15
Published in Print: 2022-10-26

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 27.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/freq-2021-0227/html
Button zum nach oben scrollen