Startseite Circular shape MIMO antenna sensor for breast tumor detection
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Circular shape MIMO antenna sensor for breast tumor detection

  • Ankit Kumar Gupta , Praveen Kumar Rao ORCID logo EMAIL logo und Rajan Mishra ORCID logo
Veröffentlicht/Copyright: 23. Juni 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, a compact circular shape ultra-wide microstrip antenna is proposed for the detection of breast tumor. The proposed antenna is a two-port MIMO antenna of 1 × 2 elements. The dimensions of the proposed antenna are 34 mm × 18mm × 1.6 mm. It is designed over a lower-cost FR-4 epoxy substrate with a partial ground plane. The antenna is operated between the frequency range of 3.1–9.6 GHz. Isolation between the antenna element is less than −22 dB from 3.1 GHz to 7 GHz and −25 dB between 7 GHz and 10.6 GHz. The obtained ECC of the designed MIMO antenna is less than 0.01 and also DG is almost 10 dB in the entire UWB range. Further, the 3D breast phantom model is also simulated for analysis of the effect of SAR. Due to the variation in the electrical properties of cancerous cells and healthy cells it is possible to identify the cancerous tumor using SAR analysis. The obtained maximum Average SAR value without a tumor is 41.97 W/kg and with a cancerous tumor is 72 W/kg. Also, the variation in reflection coefficient helps to detect the tumor of the same composition but having different locations and having different sizes inside breast phantom. The principal component analysis is done to change the multi-variation in reflection coefficients data value to a single point value for better analysis.


Corresponding author: Praveen Kumar Rao, Electronics & Communication Engineering, Madan Mohan Malaviya University of Technology, Gorakhpur, India, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] J. G. Elmore, M. B. Barton, V. M. Moceri, et al., “Ten-year risk of false positive screening mammograms and clinical breast examinations,” N. Engl. J. Med., vol. 338, no. 16, pp. 1089–1096, 1998. https://doi.org/10.1056/NEJM199804163381601.Suche in Google Scholar PubMed

[2] J. Sachs, S. Ley, T. Just, et al., “Differential ultra-wideband microwave imaging: principle application challenges,” Sensors, vol. 18, no. 7, p. 2136, 2018. https://doi.org/10.3390/s18072136.Suche in Google Scholar PubMed PubMed Central

[3] Md. T. Islam, S. Samsuzzaman, M. R. I. Faruque, M. J. Singh, and M. T. Islam, “Microwave imaging based breast tumor detection using compact wide slotted UWB patch antenna,” Optoelectron. Adv. Mater. Rapid Commun., vol. 13, pp. 448–457, 2019.Suche in Google Scholar

[4] P. K. Rao, A. R. Yadav, and R. Mishra, “AMC-based antenna sensor for breast tumors detection,” Int. J. Microw. Wirel. Technol., vol. 13, no. 9, pp. 954–961, 2020. https://doi.org/10.1017/s1759078720001609.Suche in Google Scholar

[5] H. Sung, J. Ferlay, R. L. Siegel, et al., “Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries,” CA - Cancer J. Clin., vol. 71, no. 3, pp. 209–249, 2021, https://doi.org/10.3322/caac.21660. 33538338.Suche in Google Scholar PubMed

[6] American Cancer Society, Cancer Facts & Figures 2021, Atlanta, American Cancer Society journal, CA: A Cancer Journal for Clinicians. The Facts & Figures annual report provides -2021.Suche in Google Scholar

[7] P. K. Rao and R. Mishra, “Elliptical shape CPW antenna for breast cancer detection applications,” in 2020 International Conference on Electrical and Electronics Engineering (ICE3), IEEE, 2020, pp. 489–494.10.1109/ICE348803.2020.9122817Suche in Google Scholar

[8] R. Guo, G. Lu, and B. Fei, “Ultrasound imaging technologies for breast cancer detection and management – a review,” Ultrasound Med. Biol., vol. 44, pp. 37–70, 2018, https://doi.org/10.1016/j.ultrasmedbio.2017.09.012.Suche in Google Scholar PubMed PubMed Central

[9] D. Bowles and A. Quinton, “The use of ultrasound in breast cancer screening of asymptomatic women with dense breast tissue: a narrative review,” J. Med. Imag. Radiat. Sci., vol. 47, pp. 21–28, 2016. https://doi.org/10.1016/j.jmir.2016.06.005.Suche in Google Scholar PubMed

[10] G. L. Menezes, F. M. Knuttel, B. L. Stehouwer, R. M. Pijnappel, and M. A. van den Bosch, “Magnetic resonance imaging in breast cancer: a literature review and future perspectives,” World J. Clin. Oncol., vol. 5, no. 2, pp. 61–70, 2014, https://doi.org/10.5306/wjco.v5.i2.61.Suche in Google Scholar PubMed PubMed Central

[11] P. K. Rao and R. Mishra, “Elliptical shape flexible MIMO antenna with high isolation for breast cancer detection application,” IETE J. Res., pp. 1–9, 2020, https://doi.org/10.1080/03772063.2020.1819887.Suche in Google Scholar

[12] S. A. Rezaeieh, “Wideband microwave imaging systems for the diagnosis of fluid accumulation in the human torso,” Ph.D. thesis, University of Queensland, Australia, 2016.Suche in Google Scholar

[13] R. F. Cleveland and J. L. Ulcek, “Questions and answers about biological effects and potential hazards of radiofrequency electromagnetic fields,” OET Bull., vol. 56, pp. 1–36, 1999.Suche in Google Scholar

[14] S. S. Chaudhary, R. K. Mishra, A. Swarupand, and J. M. Thomas, “Dielectric properties of normal and malignant human breast tissues at radiowave and microwave frequencies,” Indian J. Biochem. Biophys., vol. 21, pp. 76–79, 1984.Suche in Google Scholar

[15] Y. Cheng and M. Fu, “Dielectric properties for non-invasive detection of normal, benign, and malignant breast tissues using microwave theories,” Thorac. Cancer, vol. 9, no. 4, pp. 459–465, 2018, https://doi.org/10.1111/1759-7714.12605.Suche in Google Scholar PubMed PubMed Central

[16] P. M. Meaney, M. W. Fanning, D. Li, S. P. Poplack, and K. D. Paulsen, “A clinical prototype for active microwave imaging of the breast,” IEEE Trans. Microw. Theor. Tech., vol. 48, pp. 1841–1853, 2000.10.1109/22.883861Suche in Google Scholar

[17] C. Liang, R. Su, P. Gao, and P. Wang, “Compact printed MIMO antenna with 6.1GHz notched band for ultra wide applications,” Prog. Electromagn. Res. Lett., vol. 76, pp. 77–83, 2018, https://doi.org/10.2528/pierl18010907.Suche in Google Scholar

[18] N. O. Parchin, H. J. Basherlou, Y. I. Al-Yasir, A. M. Abdul Khaliq, and R. A. Abd-Al Hamid, “Ultra wideband diversity MIMO antenna system for future mobile handsets,” Sensors, vol. 20, no.8, p. 2371, 2020, https://doi.org/10.3390/s20082371.Suche in Google Scholar PubMed PubMed Central

[19] F. Foroutan and N. K. Nikolova, “Active sensor for microwave tissue imaging with bias-switched arrays,” Sensors, vol. 18, no.5, p. 1447, 2018, https://doi.org/10.3390/s18051447.Suche in Google Scholar PubMed PubMed Central

[20] J. Zhang, E. C. Fear, and R. H. Johnston, “Cross-vivaldi antenna for breast tumor detection,” Microw. Opt. Technol. Lett., vol. 51, no.2, pp. 275–280, 2009, https://doi.org/10.1002/mop.24037.Suche in Google Scholar

[21] P. K. Rao and R. Mishra, “Resonator based antenna sensor for breast cancer detection,” Prog. Electromagn. Res. C, vol. 101, pp. 149–159, 2021, https://doi.org/10.2528/pierm21011103.Suche in Google Scholar

[22] M. T. Islam, Md. M. Islam, M. Samsuzzaman, M. Faruque, and N. Misran, “A negative index metamaterial-inspired UWB antenna with an integration of complementary SRR and CLS unit cells for microwave imaging sensor applications,” Sensors, vol. 15, no. 5, pp. 11601–11627, 2015. https://doi.org/10.3390/s150511601.Suche in Google Scholar PubMed PubMed Central

[23] A. Haider, M. Rahman, M. Naghshvarianjahromi, and H. Seok Kim, “Time-domain investigation of switchable filter wide-band antenna for microwave breast imaging,” Sensors, vol. 20, no. 15, p. 4302, 2020. https://doi.org/10.3390/s20154302.Suche in Google Scholar PubMed PubMed Central

[24] M.Ur Rahman , A. Haider, and M. Naghshvarianjahromi, “A systematic methodology for the time-domain ringing reduction in UWB band-notched antennas,” IEEE Antenn. Wireless Propag. Lett., vol. 19, no.3, 2020, https://doi.org/10.1109/lawp.2020.2972025.Suche in Google Scholar

[25] S. Subramanian, B. Sundarambal, and D. Nirmal, “Investigation on simulation-based specific absorption rate in ultra-wideband antenna for breast cancer detection,” IEEE Sensor. J., vol. 18, no.24, pp. 10002–10009, 2018, https://doi.org/10.1109/jsen.2018.2875621.Suche in Google Scholar

[26] I. Amdaouch, O. Aghzout, A. Naghar, A. V. Alejos, and F. J. Falcone, “Breast tumor detection system based on a compact UWB antenna design,” Prog. Electromagn. Res. C, vol. 64, pp. 123–133, 2018, https://doi.org/10.2528/pierm17102404.Suche in Google Scholar

[27] M. K. Sharma, M. Kumar, J. P. Saini, et al., “Experimental investigation of the breast phantom for tumor detection using ultra-wide band–MIMO antenna sensor (UMAS) probe,” IEEE Sensor. J., vol. 20, no. 12, pp. 6745–6752, 2020. https://doi.org/10.1109/jsen.2020.2977147.Suche in Google Scholar

[28] Y. Xie, B. Guo, L. Xu, J. Li, and P. Stoica, “Multistatic adaptive microwave imaging for early breast cancer detection,” IEEE Trans. Biomed. Eng., vol. 53, no. 8, pp. 1647–1657, 2006, https://doi.org/10.1109/tbme.2006.878058.Suche in Google Scholar

[29] A. G. Dagheyan, A. Molaei, R. Obermeier, and J. Martinez-Lorenzo, “Preliminary imaging results and SAR analysis of a microwave imaging system for early breast cancer detection,” in Proc. 38th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBC), Aug., pp. 1066–1069, 2016.10.1109/EMBC.2016.7590887Suche in Google Scholar PubMed

[30] V. Kumari, G. Sheoran, and T. Kanumuri, “SAR analysis of directive antenna on anatomically real breast phantoms for microwave holography,” Microw. Opt. Technol. Lett., vol. 62, no. 1, pp. 466–473, 2019, https://doi.org/10.1002/mop.32037.Suche in Google Scholar

Received: 2021-09-09
Accepted: 2022-05-11
Published Online: 2022-06-23
Published in Print: 2022-10-26

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 26.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/freq-2021-0206/html
Button zum nach oben scrollen