Startseite Compact ultra-wideband monopole antenna with tunable notch bandwidth/frequency ratio
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Compact ultra-wideband monopole antenna with tunable notch bandwidth/frequency ratio

  • Karunesh Srivastava , Gaurav Varshney EMAIL logo und Rajeev Singh
Veröffentlicht/Copyright: 16. April 2021
Veröffentlichen auch Sie bei De Gruyter Brill
Frequenz
Aus der Zeitschrift Frequenz Band 75 Heft 7-8

Abstract

A compact tunable notch band ultra-wideband (UWB) antenna is implemented. The band notch characteristics have been obtained by placing a square-shaped metallic loop in the upper ground plane connected via PIN diode. The obtained notched frequency bandwidth can be altered by changing the states of the PIN diode. UWB response with narrow-band notch operation is observed when PIN diode is in ON state. When the PIN diode is in OFF state, the bandwidth of the obtained band notch widens by suppressing the first higher-order resonance and thus a narrow dual-band response is obtained. Moreover, the ratio of the frequency of first higher-order to the fundamental mode in the pass-band can be tuned with the different values as 1.584 and 2.20 in the ON and OFF state of the PIN diode, respectively. Furthermore, the antenna structure offers a compact geometry for the operation with the UWB response with band notch characteristics.


Corresponding author: Gaurav Varshney, National Institute of Technology Patna, Patna800005,India, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] Report and Order in the Commission’s Rules Regarding Ultra Wideband Transmission Systems, Federal Communications Commission, 2002.Suche in Google Scholar

[2] C. C. Chong, F. Watanabe, and H. Inamura, “Potential of UWB technology for the next generation wireless communications,” IEEE Int. Symp. Spread Spectr. Tech. Appl., pp. 422–429, 2006, https://doi.org/10.1109/ISSSTA.2006.311807.Suche in Google Scholar

[3] T. K. Roshna, U. Deepak, V. R. Sajitha, and P. Mohanan, “Coplanar stripline-fed compact UWB antenna,” Electron. Lett., vol. 50, pp. 1181–1182, 2014, https://doi.org/10.1049/el.2014.1884.Suche in Google Scholar

[4] R. Kumar and S. Gaikwad, “On the design of nano-arm fractal antenna for UWB wireless applications,” J Microwaves, Optoelectron Electromagn Appl, vol. 12, pp. 158–171, 2013, https://doi.org/10.1590/s2179-10742013000100013.Suche in Google Scholar

[5] G. K. Pandey, H. S. Singh, P. K. Bharti, and M. K. Meshram, “Metamaterial-based UWB antenna,” Electron. Lett., vol. 50, pp. 1266–1268, 2014, https://doi.org/10.1049/el.2014.2366.Suche in Google Scholar

[6] M. M. Islam, M. T. Islam, M. Samsuzzaman, and M. R. I. Faruque, “Compact metamaterial antenna for UWB applications,” Electron. Lett., vol. 51, pp. 1222–1224, 2015, https://doi.org/10.1049/el.2015.2131.Suche in Google Scholar

[7] L. Guo, S. Wang, X. Chen, and C. G. Parini, “Study of compact antenna for UWB applications,” Electron. Lett., vol. 46, pp. 115–116, 2010, https://doi.org/10.1049/el.2010.2772.Suche in Google Scholar

[8] M. J. Jeong, N. Hussain, H. U. Bong, et al.., “Ultrawideband microstrip patch antenna with quadruple band notch characteristic using negative permittivity unit cells,” Microw. Opt. Technol. Lett., vol. 62, pp. 816–824, 2020, https://doi.org/10.1002/mop.32078.Suche in Google Scholar

[9] P. Kim and Y. Jeong, “A coupled line impedance transformer for high termination impedance with a bandpass filtering response,” J Electromagn Eng Sci, vol. 18, pp. 41–45, 2018, https://doi.org/10.26866/jees.2018.18.1.41.Suche in Google Scholar

[10] T. L. Wu, Y. M. Pan, P. F. Hu, and S. Y. Zheng, “Design of a low profile and compact omnidirectional filtering patch antenna,” IEEE Access, vol. 5, pp. 1083–1089, 2017, https://doi.org/10.1109/ACCESS.2017.2651143.Suche in Google Scholar

[11] J. Park, M. Jeong, N. Hussain, S. Rhee, P. Kim, and N. Kim, “Design and fabrication of triple-band folded dipole antenna for GPS/DCS/WLAN/WiMAX applications,” Microw. Opt. Technol. Lett., vol. 61, pp. 1328–1332, 2019, https://doi.org/10.1002/mop.31739.Suche in Google Scholar

[12] N. Hussain, M. Jeong, J. Park, S. Rhee, P. Kim, and N. Kim, “A compact size 2.9-23.5 GHz microstrip patch antenna with WLAN band-rejection,” Microw. Opt. Technol. Lett., vol. 61, pp. 1307–1313, 2019, https://doi.org/10.1002/mop.31708.Suche in Google Scholar

[13] Y. Zhang, W. Hong, C. Yu, Z. Q. Kuai, Y. D. Don, and J. Y. Zhou, “Planar ultrawideband antennas with multiple notched bands based on etched slots on the patch and/or split ring resonators on the feed line,” IEEE Trans. Antenn. Propag., vol. 56, pp. 3063–3068, 2008, https://doi.org/10.1109/TAP.2008.928815.Suche in Google Scholar

[14] K. Y. Mok, Y. C. Rhee, and J. H. Yoon, “Design of a pot-shaped monopole antenna with dual band notched characteristics for UWB application,” J Electromagn Eng Sci, vol. 17, pp. 44–49, 2017, https://doi.org/10.5515/JKIEES.2017.17.1.44.Suche in Google Scholar

[15] H. U. Bong, M. Jeong, N. Hussain, S. Y. Rhee, S. K. Gil, and N. Kim, “Design of an UWB antenna with two slits for 5G/WLAN-notched bands,” Microw. Opt. Technol. Lett., vol. 61, pp. 1295–1300, 2019, https://doi.org/10.1002/mop.31670.Suche in Google Scholar

[16] M. Yazdi and N. Komjani, “Design of a band-notched UWB monopole antenna by means of an EBG structure,” IEEE Antenn. Wireless Propag. Lett., vol. 10, pp. 170–173, 2011, https://doi.org/10.1109/LAWP.2011.2116150.Suche in Google Scholar

[17] N. Jaglan, B. K. Kanaujia, S. D. Gupta, and S. Srivastava, “Triple band notched UWB antenna design using electromagnetic band gap structures,” Prog Electromagn Res C, vol. 66, pp. 139–147, 2016, https://doi.org/10.2528/PIERC16052304.Suche in Google Scholar

[18] A. Iqbal, A. Smida, N. K. Mallat, M. T. Islam, and S. Kim, “A compact UWB antenna with independently controllable notch bands,” Sensors (Switzerland), vol. 19, pp. 1–12, 2019, https://doi.org/10.3390/s19061411.Suche in Google Scholar

[19] S. W. Qu, J. L. Li, and Q. Xue, “A band-notched ultrawideband printed monopole antenna,” IEEE Antenn. Wireless Propag. Lett., vol. 5, pp. 495–498, 2006, https://doi.org/10.1109/LAWP.2006.886303.Suche in Google Scholar

[20] X. L. Bao and M. J. Ammann, “Printed UWB antenna with coupled slotted element for notch-frequency function,” Int. J. Antenn. Propag., vol. 2008, pp. 1–8, 2008, https://doi.org/10.1155/2008/713921.Suche in Google Scholar

[21] A. Tariq and H. Ghafouri-Shiraz, “Frequency-reconfigurable monopole antennas,” IEEE Trans. Antenn. Propag., vol. 60, pp. 44–50, 2012, https://doi.org/10.1109/TAP.2011.2167929.Suche in Google Scholar

[22] Y. Sung, “Triple band-notched UWB planar monopole antenna using a modified H-shaped resonator,” IEEE Trans. Antenn. Propag., vol. 61, pp. 953–957, 2013, https://doi.org/10.1109/TAP.2012.2223434.Suche in Google Scholar

[23] T. Sharma, G. Varshney, and R. S. Y. M. Vashishath, “Obtaining the tunable band-notch in ultrawideband THz antenna using graphene nanoribbons,” Opt. Eng., vol. 59, 2020, Art no. 047103, https://doi.org/10.1117/1.OE.59.4.047103.Suche in Google Scholar

[24] M. R. Hamid, P. Gardner, P. S. Hall, and F. Ghanem, “Vivaldi antenna with integrated switchable band pass resonator,” IEEE Trans. Antenn. Propag., vol. 59, pp. 4008–4015, 2011, https://doi.org/10.1109/TAP.2011.2164197.Suche in Google Scholar

[25] S. Gotra, G. Varshney, R. S. Yaduvanshi, and V. S. Pandey, “Dual-band circular polarisation generation technique with the miniaturisation of a rectangular dielectric resonator antenna,” IET Microw., Antennas Propag., 2019, Vol 13 iss 10, pp.1742-1748.10.1049/iet-map.2019.0030Suche in Google Scholar

[26] S. Y. Chen and P. Hsu, “Broad-band radial slot antenna fed by coplanar waveguide for dual-frequency operation,” IEEE Trans. Antenn. Propag., vol. 53, pp. 3448–3452, 2005, https://doi.org/10.1109/TAP.2005.858574.Suche in Google Scholar

[27] X. L. Bao and M. J. Ammann, “Dual-frequency circularly-polarized patch antenna with compact size and small frequency ratio,” IEEE Trans. Antenn. Propag., vol. 55, pp. 2104–2107, 2007, https://doi.org/10.1109/TAP.2007.900271.Suche in Google Scholar

[28] W. Liao, Q. X. Chu, and S. Du, “A small frequency ratio dual-band circularly polarized microstrip antenna,” in APMC 2009-Asia Pacific Microw Conf 2009 2009, pp. 2798–2801.10.1109/APMC.2009.5385309Suche in Google Scholar

[29] C. H. Chen and E. K. N. Yung, “Dual-band circularly-polarized CPW-fed slot antenna with a small frequency ratio and wide bandwidths,” IEEE Trans. Antenn. Propag., vol. 59, pp. 1379–1384, 2011, https://doi.org/10.1109/TAP.2011.2109347.Suche in Google Scholar

[30] C. Z. N. Nasimuddin and X. Qing, “Dual-band circularly polarized S-shaped slotted patch antenna with a small frequency-ratio,” IEEE Trans. Antenn. Propag., vol. 58, pp. 2112–2115, 2010, https://doi.org/10.1109/TAP.2010.2046851.Suche in Google Scholar

[31] D. Yang, F. Cao, and J. Pan, “A single-layer dual-frequency,” Shared-Aperture, vol. 17, pp. 2018–2021, 2018.10.1109/LAWP.2018.2830760Suche in Google Scholar

[32] S. Maci, G. Biffi Gentili, P. Piazzesi, and C. Salvador, “Dual-band slot-loaded patch antenna,” IEE Proc. Microw. Antenn. Propag., vol. 142, pp. 225–232, 1995, https://doi.org/10.1049/ip-map:19951932.10.1049/ip-map:19951932Suche in Google Scholar

[33] K. P. Yang and K. L. Wong, “Dual-band circularly-polarized square microstrip antenna,” IEEE Trans. Antenn. Propag., vol. 49, pp. 377–382, 2001, https://doi.org/10.1109/8.918611.Suche in Google Scholar

[34] M. D. Wright, W. Baron, J. Miller, J. Tuss, D. Zeppettella, and M. Ali, “MEMS reconfigurable broadband patch antenna for conformal applications,” IEEE Trans. Antenn. Propag., vol. 66, pp. 2770–2778, 2018, https://doi.org/10.1109/TAP.2018.2819818.Suche in Google Scholar

[35] Q. Liu, N. Wang, C. Wu, G. Wei, and A. B. Smolders, “Frequency reconfigurable antenna controlled by multi-reed switches,” IEEE Antenn. Wireless Propag. Lett., vol. 14, pp. 927–930, 2015, https://doi.org/10.1109/LAWP.2014.2386694.Suche in Google Scholar

[36] B. A. Cetiner, G. Roqueta Crusats, L. Jofre, and N. Biyikli, “RF MEMS integrated frequency reconfigurable annular slot antenna,” IEEE Trans. Antenn. Propag., vol. 58, pp. 626–632, 2010, https://doi.org/10.1109/TAP.2009.2039300.Suche in Google Scholar

[37] I. T. E. Elfergani, A. S. Hussaini, C. H. See, et al.., “Printed monopole antenna with tunable band-notched characteristic for use in mobile and ultra-wide band applications,” Int J RF Microw Comput Eng, vol. 25, pp. 403–412, 2015, https://doi.org/10.1002/mmce.20874.Suche in Google Scholar

[38] N. Nguyen-trong, L. Hall, and C. Fumeaux, “A frequency- and pattern-reconfigurable center-shorted microstrip antenna,” IEEE Antennas Propag Lett, vol. 15, pp. 1955–1958, 2016.10.1109/LAWP.2016.2544943Suche in Google Scholar

[39] Y. H. Cui, P. P. Zhang, and R. L. Li, “Broadband quad-polarisation reconfigurable antenna,” Electron. Lett., vol. 54, pp. 1199–1200, 2018, https://doi.org/10.1049/el.2018.5244.Suche in Google Scholar

[40] P. Y. Qin, Y. Jay Guo, and C. Ding, “A dual-band polarization reconfigurable antenna for WLAN systems,” IEEE Trans. Antenn. Propag., vol. 61, pp. 5706–5713, 2013, https://doi.org/10.1109/TAP.2013.2279219.Suche in Google Scholar

[41] L. Ge and K. M. Luk, “Frequency-reconfigurable low-profile circular monopolar patch antenna,” IEEE Trans. Antenn. Propag., vol. 62, pp. 3443–3449, 2014, https://doi.org/10.1109/TAP.2014.2318077.Suche in Google Scholar

[42] G. Chen, X. L. Yang, and Y. Wang, “Dual-band frequency-reconfigurable folded slot antenna for wireless communications,” IEEE Antenn. Wireless Propag. Lett., vol. 11, pp. 1386–1389, 2012, https://doi.org/10.1109/LAWP.2012.2227293.Suche in Google Scholar

[43] J. Perruisseau-Carrier, P. Pardo-Carrera, and P. Miskovsky, “Modeling, design and characterization of a very wideband slot antenna with reconfigurable band rejection,” IEEE Trans. Antenn. Propag., vol. 58, pp. 2218–2226, 2010, https://doi.org/10.1109/TAP.2010.2048872.Suche in Google Scholar

[44] S. Nikolaou, R. Bairavasubramanian, C. Lugo, et al.., “Pattern and frequency reconfigurable annular slot antenna using pin diodes,” IEEE Trans. Antenn. Propag., vol. 54, pp. 439–448, 2006. https://doi.org/10.1109/TAP.2005.863398.Suche in Google Scholar

[45] H. A. Majid, M. K. A. Rahim, M. R. Hamid, and M. F. Ismail, “A compact frequency-Reconfigurable narrowband microstrip slot antenna,” IEEE Antenn. Wireless Propag. Lett., vol. 11, pp. 616–619, 2012. https://doi.org/10.1109/LAWP.2012.2202869.Suche in Google Scholar

[46] H. A. Majid, M. K. A. Rahim, M. R. Hamid, M. F. Ismail, and M. R. Sani, “Frequency reconfigurable microstrip patch antenna,” in 2012 IEEE Asia-Pacific Conference on Applied Electromagnetics APACE 2012-Proceedings, 2012, pp. 342–345.10.1109/APACE.2012.6457690Suche in Google Scholar

[47] H. A. Majid, M. K. A. Rahim, M. R. Hamid, M. F. Ismail, and F. Malek, “Frequency reconfigurable wide to narrow band monopole with slotted ground plane antenna,” J. Electromagn. Waves Appl., vol. 26, pp. 1460–1469, 2012. https://doi.org/10.1080/09205071.2012.702536.Suche in Google Scholar

[48] F. Meng and S. K. Sharma, “Single feed dual-frequency orthogonal linear-polarization microstrip patch antenna with large frequency ratio,” IEEE Antennas Propag. Soc. AP-S Int. Symp., vol. 2015, pp. 836–837, 2015, https://doi.org/10.1109/APS.2015.7304805.Suche in Google Scholar

[49] F. Meng and S. K. Sharma, “A dual-band high-gain resonant cavity antenna with a single layer superstrate,” IEEE Trans. Antenn. Propag., vol. 63, pp. 2320–2325, 2015. https://doi.org/10.1109/TAP.2015.2405082.Suche in Google Scholar

[50] S. Du, Q. X. Chu, and W. Liao, “Dual-band circularly polarized stacked square microstrip antenna with small frequency ratio,” J. Electromagn. Waves Appl., vol. 24, pp. 1599–1608, 2010. https://doi.org/10.1163/156939310792149696.Suche in Google Scholar

[51] Z. Wang, R. She, J. Han, S. Fang, and Y. Liu, “Dual-band dual-sense circularly polarized stacked patch antenna with a small frequency ratio for UHF RFID reader applications,” IEEE Access, vol. 5, 2017. https://doi.org/10.1109/ACCESS.2017.2733625.Suche in Google Scholar

[52] P. Nayeri, K. F. Lee, A. Z. Elsherbeni, and F. Yang, “Dual-band circularly polarized antennas using stacked patches with asymmetric u-slots,” IEEE Antenn. Wireless Propag. Lett., vol. 10, pp. 492–495, 2011. https://doi.org/10.1109/LAWP.2011.2153820.Suche in Google Scholar

[53] J. D. Zhang, W. Wu, and D. G. Fang, “Dual-band and dual-circularly polarized shared-aperture array antennas with single-layer substrate,” IEEE Trans. Antenn. Propag., vol. 64, pp. 109–116, 2016. https://doi.org/10.1109/TAP.2015.2501847.Suche in Google Scholar

[54] Z. X. Liang, D. C. Yang, X. C. Wei, and E. P. Li, “Dual-band dual circularly polarized microstrip antenna with two eccentric rings and an arc-shaped conducting strip,” IEEE Antenn. Wireless Propag. Lett., vol. 15, pp. 834–837, 2016. https://doi.org/10.1109/LAWP.2015.2476505.Suche in Google Scholar

[55] J. D. Zhang, L. Zhu, N. W. Liu, and W. Wu, “Dual-band and dual-circularly polarized single-layer microstrip array based on multiresonant modes,” IEEE Trans. Antenn. Propag., vol. 65, pp. 1428–1433, 2017. https://doi.org/10.1109/TAP.2016.2647582.Suche in Google Scholar

[56] D. Sheet, “SMP1320 Series : low resistance , low capacitance,” Plastics, vol. 23, pp. 1–7, 2006.Suche in Google Scholar

[57] N. Jaglan, S. D. Gupta, B. K. Kanaujia, and S. Srivastava, “Band notched UWB circular monopole antenna with inductance enhanced modified mushroom EBG structures,” Wirel. Netw., vol. 24, pp. 383–393, 2018. https://doi.org/10.1007/s11276-016-1343-7.Suche in Google Scholar

[58] P. Gao, S. He, X. Wei, et al.., “Compact printed UWB diversity slot antenna,” IEEE Antenn. Wirel. Propag. Lett., vol. 1, pp. 10–13, 2014. https://doi.org/10.1109/LAWP.2014.2305772.Suche in Google Scholar

[59] S. M. Khan, M. A. S. Adnan, and D. B. Antonio-Daniele C, “A compact four elements UWB MIMO antenna with on-demand WLAN rejection,” Microw. Opt. Technol. Lett., vol. 58, pp. 270–276, 2016. https://doi.org/10.1002/mop.Suche in Google Scholar

[60] J. Y. Siddiqui, C. Saha, and Y. M. M. Antar, “Compact SRR loaded UWB circular monopole antenna with frequency notch characteristics,” IEEE Trans. Antenn. Propag., vol. 62, pp. 4015–4020, 2014. https://doi.org/10.1109/TAP.2014.2327124.Suche in Google Scholar

[61] G. Mishra and S. Sudhakar, “Compact circular patch UWB antenna with WLAN band notch characteristics,” Microw. Opt. Technol. Lett., vol. 58, pp. 1068–1073, 2016. https://doi.org/10.1002/mop.Suche in Google Scholar

[62] R. Azim and M. T. Islam, “Compact planar uwb antenna with band notch characteristics for WLAN and DSRC,” Prog Electromagn Res, vol. 133, pp. 391–406, 2013.10.2528/PIER12090601Suche in Google Scholar

[63] T. Mandal and S. Das, “Design of a microstrip fed printed monopole antenna for bluetooth and UWB applications with WLAN notch band characteristics,” Int J RF Microw Comput Eng, vol. 25, pp. 66–74, 2015. https://doi.org/10.1002/mmce.20824.Suche in Google Scholar

[64] S. Yadav, K. Gautam Anil, and B. K. Kanaujia, “Design of miniaturized single band-notch micro strip antenna with enhanced UWB performance,” Microw. Opt. Technol. Lett., vol. 58, pp. 1494–1499, 2016. https://doi.org/10.1002/mop.Suche in Google Scholar

[65] Y. K. Choukiker and S. K. Behera, “Modified Sierpinski square fractal antenna covering ultra-wide band application with band notch characteristics,” IET Microw., Antennas Propag., vol. 8, pp. 506–512, 2014. https://doi.org/10.1049/iet-map.2013.0235.Suche in Google Scholar

Received: 2020-10-04
Accepted: 2021-03-22
Published Online: 2021-04-16
Published in Print: 2021-07-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 25.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/freq-2020-0173/html
Button zum nach oben scrollen