Startseite Compact antenna based on split ring resonator as high Q-factor antenna for liquid permittivity measurements
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Compact antenna based on split ring resonator as high Q-factor antenna for liquid permittivity measurements

  • Shima Poorgholam-Khanjari , Ahmad Hatami und Ferdows B. Zarrabi EMAIL logo
Veröffentlicht/Copyright: 12. Mai 2021
Veröffentlichen auch Sie bei De Gruyter Brill
Frequenz
Aus der Zeitschrift Frequenz Band 75 Heft 7-8

Abstract

Microwave sensing is important to measure the permittivity of the materials or detecting a material. In this current work, a compact antenna for WLAN application with circular polarization is designed. We are supposed to use it as a sensor to determine the permittivity of industrial oil. For calibration of the sensor, the gasoline and petrol are utilized based on Debye theory and also butanol is checked. This antenna is designed based on Microstrip slot antenna with bent feed line and special split-ring resonator (SRR) as a metamaterial (MTM) element for 4 GHz, it is shown that metamaterial can be considered for improving the Q-factor and matching where the return loss is reduced from −16.5 to −33.5 dB and the Q-factor is increased from 2.39 to 32.9. It covers 4–5 GHz with the bidirectional pattern with gain of 4 dBi which makes it useful for putting inside of liquids. The total dimensions of this resonator are 20 × 20 × 1.6 mm and the FR-4 low-cost substrate is used and the experimental results are confirmed the simulations results by HFSS commercial full-wave software. In fact, this method can be used for fast detecting oil condition and longevity by checking the resonances’ shift and permittivity.


Corresponding author: Ferdows B. Zarrabi, Faculty of Electrical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] G. Gennarelli, S. Romeo, M. R. Scarfi, and F. Soldovieri, “A microwave resonant sensor for concentration measurements of liquid solutions,” IEEE Sens. J., vol. 13, no. 5, pp. 1857–1864, 2013. https://doi.org/10.1109/jsen.2013.2244035.Suche in Google Scholar

[2] B. Amyrul Azuan Mohd, Z. Zakaria, S. Rosmaniza Ab Rashid, A. Awang Md Isa, R. A. Alahnomi, and Y. Dasril, “Microfluidic planar resonator sensor with highly precise measurement for microwave applications,” in 2017 11th European conference on antennas and propagation (EUCAP), IEEE, 2017, pp. 1843–1846.Suche in Google Scholar

[3] H. Guo, L. Yao, and F. Huang, “A cylindrical cavity sensor for liquid water content measurement,” Sens. Actuators A: Phys., vol. 238, pp. 133–139, 2016. https://doi.org/10.1016/j.sna.2015.12.008.Suche in Google Scholar

[4] C. Gao, E. Li, C. Yu, Y. Zhang, G. Guo, and C. Wang, “Distribution measurement of permittivity by dividing the sample into multisection in the slotted cylindrical cavity,” Sens. Actuators A: Phys., vol. 286, pp. 98–106, 2019. https://doi.org/10.1016/j.sna.2018.12.029.Suche in Google Scholar

[5] K. Saeed, R. D. Pollard, and I. C. Hunter, “Substrate integrated waveguide cavity resonators for complex permittivity characterization of materials,” IEEE Trans. Microw. Theory Technol., vol. 56, no. 10, pp. 2340–2347, 2008. https://doi.org/10.1109/tmtt.2008.2003523.Suche in Google Scholar

[6] H. Lobato-Morales, A. Corona-Chavez, D. V. B. Murthy, and J. L. Olvera-Cervantes, “Complex permittivity measurements using cavity perturbation technique with substrate integrated waveguide cavities,” Rev. Sci. Instrum., vol. 81, no. 6, pp. 1–4, 2010. https://doi.org/10.1063/1.3442512.Suche in Google Scholar

[7] S. Clerjon and J. L. Damez, “Microwave sensing for meat and fish structure evaluation,” Meas. Sci. Technol., vol. 18, no. 4, p. 1038, 2007. https://doi.org/10.1088/0957-0233/18/4/011.Suche in Google Scholar

[8] X. C. Zhu, W. Hong, P. P. Zhang, et al.., “Extraction of dielectric and rough conductor loss of printed circuit board using differential method at microwave frequencies,” IEEE Trans. Microw. Theory Technol., vol. 63, no. 2, pp. 494–503, 2015. https://doi.org/10.1109/tmtt.2014.2377045.Suche in Google Scholar

[9] A. Pourghorban Saghati, J. Singh Batra, J. Kameoka, and K. Entesari, “A metamaterial-inspired wideband microwave interferometry sensor for dielectric spectroscopy of liquid chemicals,” IEEE Trans. Microw. Theory Technol., vol. 65, no. 7, pp. 2558–2571, 2017. https://doi.org/10.1109/tmtt.2016.2645155.Suche in Google Scholar

[10] F. Costa, C. Amabile, A. Monorchio, and E. Prati, “Waveguide dielectric permittivity measurement technique based on resonant FSS filters,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 5, pp. 273–275, 2011. https://doi.org/10.1109/lmwc.2011.2122303.Suche in Google Scholar

[11] W. Liu, M. Wang, and Y. Shi, “A transmission-reflection method for complex permittivity measurement using a planar sensor,” IEEE Sens. J., vol. 18, no. 10, pp. 4059–4065, 2018. https://doi.org/10.1109/jsen.2018.2820079.Suche in Google Scholar

[12] D. M. Hagl, D. Popovic, S. C. Hagness, J. H. Booske, and M. Okoniewski, “Sensing volume of open-ended coaxial probes for dielectric characterization of breast tissue at microwave frequencies,” IEEE Trans. Microw. Theory Technol., vol. 51, no. 4, pp. 1194–1206, 2003.10.1109/TMTT.2003.809626Suche in Google Scholar

[13] H. Ebara, T. Inoue, and O. Hashimoto, “Measurement method of complex permittivity and permeability for a powdered material using a waveguide in microwave band,” Sci. Technol. Adv. Mater., vol. 7, no. 1, pp. 77–83, 2006. https://doi.org/10.1016/j.stam.2005.11.019.Suche in Google Scholar

[14] P. Sharma, L. Lao, and G. Falcone, “A microwave cavity resonator sensor for water-in-oil measurements,” Sens. Actuators B: Chem., vol. 262, pp. 200–210, 2018. https://doi.org/10.1016/j.snb.2018.01.211.Suche in Google Scholar

[15] H. Lobato-Morales, A. Corona-Chavez, J. L. Olvera-Cervantes, R. A. Chávez-Pérez, and J. L. Medina-Monroy, “Wireless sensing of complex dielectric permittivity of liquids based on the RFID,” IEEE Trans. Microw. Theory Technol., vol. 62, no. 9, pp. 2160–2167, 2014. https://doi.org/10.1109/tmtt.2014.2333711.Suche in Google Scholar

[16] J. N. Li, W. Withayachumnankul, S. J. Chang, and D. Abbott, “Practical method for determining inductance and capacitance of metamaterial resonators,” Electron. Lett., vol. 48, no. 4, pp. 225–227, 2012. https://doi.org/10.1049/el.2011.3547.Suche in Google Scholar

[17] F. Fesharaki, C. Akyel, and K. Wu, “Broadband permittivity measurement of dielectric materials using discontinuity in substrate integrated waveguide,” Electron. Lett., vol. 49, no. 3, pp. 194–196, 2013. https://doi.org/10.1049/el.2012.3988.Suche in Google Scholar

[18] K. S. Ashok and T. Shanmuganantham, “Design of implantable CPW fed monopole H-slot antenna for 2.45 GHz ISM band applications,” AEU Int. J. Electron. Commun., vol. 68, no. 7, pp. 661–666, 2014.10.1016/j.aeue.2014.02.010Suche in Google Scholar

[19] F. Kazemi, F. Mohanna, and J. Ahmadi-Shokouh, “Nondestructive high-resolution microwave imaging of biomaterials and biological tissues,” AEU Int. J. Electron. Commun., vol. 84, pp. 177–185, 2018. https://doi.org/10.1016/j.aeue.2017.10.031.Suche in Google Scholar

[20] J. Naqui, M. Durán-Sindreu, and F. Martín, “Modeling split-ring resonator (SRR) and complementary split-ring resonator (CSRR) loaded transmission lines exhibiting cross-polarization effects,” IEEE Antenn. Wireless Propag. Lett., vol. 12, pp. 178–181, 2013. https://doi.org/10.1109/lawp.2013.2245095.Suche in Google Scholar

[21] H. Nornikman, B. H. Ahmad, A. R. Othman, M. Z. Abdul Aziz, F. Malek, and H. Imran, “Study and simulation of an edge couple split ring resonator (EC-SRR) on truncated pyramidal microwave absorber,” Prog. Electromagn. Res., vol. 127, pp. 319–334, 2012. https://doi.org/10.2528/pier12030601.Suche in Google Scholar

[22] R. Marqués, F. Mesa, J. Martel, and F. Medina, “Comparative analysis of edge-and broadside-coupled split ring resonators for metamaterial design-theory and experiments,” IEEE Trans. Antenn. Propag., vol. 51, no. 10, pp. 2572–2581, 2003. https://doi.org/10.1109/tap.2003.817562.Suche in Google Scholar

[23] S. Kayal, T. Shaw, and D. Mitra, “Design of metamaterial-based compact and highly sensitive microwave liquid sensor,” Appl. Phys. A, vol. 126, no. 1, p. 13, 2020. https://doi.org/10.1007/s00339-019-3186-4.Suche in Google Scholar

[24] F. S. Jafari and J. Ahmadi-Shokouh, “Industrial liquid characterization enhancement using microwave sensor equipped with electronic band gap structure,” AEU Int. J. Electron. Commun., vol. 82, pp. 152–159, 2017. https://doi.org/10.1016/j.aeue.2017.08.016.Suche in Google Scholar

[25] N. Meyne, C. Cammin, and A. F. Jacob, “Accuracy enhancement of a split-ring resonator liquid sensor using dielectric resonator coupling,” in Microwaves, radar, and wireless communication (MIKON), Gdansk, Poland, IEEE, 2014, pp. 1–4.10.1109/MIKON.2014.6899869Suche in Google Scholar

[26] F. B. Zarrabi, Z. Mansouri, R. Ahmadian, M. Rahimi, and H. Kuhestani, “Microstrip slot antenna applications with SRR for WiMAX/WLAN with linear and circular polarization,” Microw. Opt. Technol. Lett., vol. 57, no. 6, pp. 1332–1338, 2015. https://doi.org/10.1002/mop.29080.Suche in Google Scholar

[27] P. Prabhu and S. Malarvizhi, “Novel double-side EBG based mutual coupling reduction for compact quad port UWB MIMO antenna,” AEU Int. J. Electron. Commun., vol. 109, pp. 146–156, 2019. https://doi.org/10.1016/j.aeue.2019.06.010.Suche in Google Scholar

[28] M. E. Jalil, M. K. A. Rahim, N. A. Samsuri, and R. Dewan, “Flexible printed chipless RFID tag using metamaterial–split ring resonator,” Appl. Phys. A, vol. 122, no. 4, p. 348, 2016. https://doi.org/10.1007/s00339-016-9865-5.Suche in Google Scholar

[29] H. A. Majid, M. K. A. Rahim, and T. Masri, “Microstrip antenna’s gain enhancementusing left-handed metamaterial structure,” Prog. Electromag. Res., vol. 8, pp. 235–247, 2009. https://doi.org/10.2528/pierm09071301.Suche in Google Scholar

[30] S. Poorgholam-Khanjari, F. B. Zarrabi, and S. Jarchi, “Compact and wide-band Quasi Yagi-Uda antenna based on periodic grating ground and coupling method in terahertz regime,” Optik, vol. 203, p. 163990, 2020.10.1016/j.ijleo.2019.163990Suche in Google Scholar

[31] A. Veeramani, A. Saee Arezomand, J. Vijayakrishnan, and F. B. Zarrabi, “Compact S-shaped EBG structures for reduction of mutual coupling,” in 2015 fifth international conference on advanced computing & communication technologies, Haryana, India, IEEE, 2015, pp. 21–25.10.1109/ACCT.2015.112Suche in Google Scholar

[32] R. Salhi, M. Labidi, and F. Choubani, “A coplanar wideband antenna based on metamaterial refractive surface,” Appl. Phys. A, vol. 122, no. 1, p. 12, 2016. https://doi.org/10.1007/s00339-015-9524-2.Suche in Google Scholar

[33] S. Kiani, P. Rezaei, M. Navaei, and M. S. Abrishamian, “Microwave sensor for detection of solid material permittivity in single/multilayer samples with high quality factor,” IEEE Sens. J., vol. 18, no. 24, pp. 9971–9977, 2018. https://doi.org/10.1109/jsen.2018.2873544.Suche in Google Scholar

[34] H. Lobato-Morales, D. V. B. Murthy, A. Corona-Chávez, J. L. Olvera-Cervantes, J. Martínez-Brito, and L. G. Guerrero-Ojeda, “Permittivity measurements at microwave frequencies using epsilon-near-zero (ENZ) tunnel structure,” IEEE Trans. Microw. Theory Technol., vol. 59, no. 7, pp. 1863–1868, 2011. https://doi.org/10.1109/tmtt.2011.2132141.Suche in Google Scholar

[35] H. Kuhestani, M. Rahimi, Z. Mansouri, F. B. Zarrabi, and R. Ahmadian, “Design of compact patch antenna based on metamaterial for WiMAX applications with circular polarization,” Microw. Opt. Technol. Lett., vol. 57, no. 2, pp. 357–360, 2015. https://doi.org/10.1002/mop.28846.Suche in Google Scholar

[36] A. Pirooj, M. Naser‐Moghadasi, and F. B. Zarrabi, “Design of compact slot antenna based on split ring resonator for 2.45/5 GHz WLAN applications with circular polarization,” Microw. Opt. Technol. Lett., vol. 58, no. 1, pp. 12–16, 2016. https://doi.org/10.1002/mop.29484.Suche in Google Scholar

[37] A. Pirooj, M. Naser-Moghadasi, F. B. Zarrabi, and A. Sharifi, “A Dual band slot antenna for wireless applications with circular polarization,” Prog. Electromag. Res., vol. 71, pp. 69–77, 2017. https://doi.org/10.2528/pierc16111401.Suche in Google Scholar

[38] S. Yoshida, H. Hanzawa, K. Wasa, and S. Tanaka, “Fabrication and characterization of large figure-of-merit epitaxial PMnN-PZT/Si transducer for piezoelectric MEMS sensors,” Sens. Actuators A: Phys., vol. 239, pp. 201–208, 2016. https://doi.org/10.1016/j.sna.2016.01.031.Suche in Google Scholar

[39] M. Bozzi, A. Georgiadis, and K. Wu, “Review of substrate-integrated waveguide circuits and antennas,” IET Microw., Antennas Propag., vol. 5, no. 8, pp. 909–920, 2011. https://doi.org/10.1049/iet-map.2010.0463.Suche in Google Scholar

[40] F. S. Jafari and J. Ahmadi-Shokouh, “Reconfigurable microwave SIW sensor based on PBG structure for high accuracy permittivity characterization of industrial liquids,” Sens. Actuators A: Phys., vol. 283, pp. 386–395, 2018. https://doi.org/10.1016/j.sna.2018.06.008.Suche in Google Scholar

[41] A. K. Jha and M. Jaleel Akhtar, “SIW cavity based RF sensor for dielectric characterization of liquids,” in IEEE conference on in antenna measurements & applications (CAMA), Antibes Juan-les-Pins, France, IEEE, 2014, pp. 1–4.10.1109/CAMA.2014.7003427Suche in Google Scholar

[42] H. Lobato-Morales, A. Corona-Chavez, J. L. Olvera-Cervantes, R. A. Chávez-Pérez, and J. L. Medina-Monroy, “Wireless sensing of complex dielectric permittivity of liquids based on the RFID,” IEEE Trans. Microw. Theory Technol., vol. 62, no. 9, pp. 2160–2167, 2014. https://doi.org/10.1109/tmtt.2014.2333711.Suche in Google Scholar

[43] M. I. Epov, V. L. Mironov, P. P. Bobrov, IV Savin, and A. V. Repin, “Dielectric spectroscopy of oil-bearing rocks at 0.05–16 GHz,” Russ. Geol. Geophys., vol. 50, no. 5, pp. 470–474, 2009. https://doi.org/10.1016/j.rgg.2009.04.004.Suche in Google Scholar

Received: 2020-09-05
Accepted: 2021-04-27
Published Online: 2021-05-12
Published in Print: 2021-07-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 28.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/freq-2020-0142/html
Button zum nach oben scrollen