Startseite Singular integral equations in plane wave scattering by infinite graphene strip grating with brake of periodicity
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Singular integral equations in plane wave scattering by infinite graphene strip grating with brake of periodicity

  • Mstislav E. Kaliberda ORCID logo EMAIL logo , Leonid M. Lytvynenko und Sergey A. Pogarsky
Veröffentlicht/Copyright: 10. Mai 2021
Veröffentlichen auch Sie bei De Gruyter Brill
Frequenz
Aus der Zeitschrift Frequenz Band 75 Heft 7-8

Abstract

In this paper, the solution of the H-polarized wave scattering problem by infinite graphene strip grating is obtained. The structure is periodic except two neighboring strips. The distance between these two strips is arbitrary. In particular, such a problem allows to quantify the mutual interaction of graphene strips in the array. The total field is represented as a superposition of the field of currents on the ideally-periodic grating and correction currents induced by the shift of the strips. The analysis is based on the convergent method of singular integral equations. It enables us to study the influence of the correction currents in a wide range from 10 GHz to 6 THz. It is shown that the interaction between graphene strips is strong near plasmon resonances and near the Rayleigh anomaly.


Corresponding author: Mstislav E. Kaliberda, Department of Radiophysics, Biomedical Electronics and Computer Systems, V. Karazin Kharkiv National University, Kharkiv, Ukraine, E-mail:

Award Identifier / Grant number: 0117U004964

Award Identifier / Grant number: 0118U002038

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by the Ministry of Education and Science of Ukraine, grants 0118U002038, 0117U004964.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater., vol. 6, pp. 183–191, 2007, https://doi.org/10.1038/nmat1849.Suche in Google Scholar

[2] L. Ju, B. Geng, J. Horng, et al.., “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol., vol. 6, pp. 630–634, 2011, https://doi.org/10.1038/nnano.2011.146.Suche in Google Scholar

[3] W. Zhou, J. Lee, J. Nanda, S. T. Pantelides, S. J. Pennycook, and J.-C. Idrobo, “Atomically localized plasmon enhancement in monolayer graphene,” Nat. Nanotechnol., vol. 7, pp. 161–165, 2012, https://doi.org/10.1038/nnano.2011.252.Suche in Google Scholar

[4] H. Yan, X. Li, B. Chandra, et al.., “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nat. Nanotechnol., vol. 7, pp. 330–4, 2012, https://doi.org/10.1038/nnano.2012.59.Suche in Google Scholar

[5] Z. Xu, D. Wu, Y. Liu, et al.., “Design of a tunable ultra-broadband terahertz absorber based on multiple layers of graphene ribbons,” Nanosc. Res. Lett., vol. 13, p. 143, 2018, https://doi.org/10.1186/s11671-018-2552-z.Suche in Google Scholar

[6] A. Khavasi, “Design of ultra-broadband graphene absorber using circuit theory,” J. Opt. Soc. Am. B, vol. 32, pp. 1941–1946, 2015, https://doi.org/10.1364/josab.32.001941.Suche in Google Scholar

[7] J. Chen, J. Li, and Q.-H. Liu, “Designing graphene-based absorber by using HIE-FDTD method,” IEEE Trans. Antenn. Propag., vol. 65, pp. 1896–1902, 2017, https://doi.org/10.1109/tap.2017.2670610.Suche in Google Scholar

[8] M. Tamagnone, J. S. Gómez-Díaz, J. R. Mosig, and J. Perruisseau-Carrier, “Analysis and design of terahertz antennas based on plasmonic resonant graphene sheets,” J. Appl. Phys., vol. 112, p. 114915, 2012, https://doi.org/10.1063/1.4768840.Suche in Google Scholar

[9] W. Fuscaldo, P. Burghignoli, P. Baccarelli, and A. Galli, “Efficient 2-d leaky-wave antenna configurations based on graphene metasurfaces,” Int. J. Microwave Wirel. Technol., vol. 9, pp. 1293–1303, 2017, https://doi.org/10.1017/s1759078717000459.Suche in Google Scholar

[10] O. V. Shapoval and A. I. Nosich, “Bulk refractive-index sensitivities of the THz-range plasmon resonances on a micro-size graphene strip,” J. Phys. Appl. Phys., vol. 49, p. 055105/8, 2019.10.1088/0022-3727/49/5/055105Suche in Google Scholar

[11] B. Zhang, J. M. Jornet, I. F. Akyldiz, and Z.-P. WU, “Mutual coupling reduction for ultra-dense multi-band plasmonic nano-antenna arrays using graphene-based frequency selective surface,” IEEE Access, vol. 7, pp. 33214–33225, 2019, https://doi.org/10.1109/access.2019.2903493.Suche in Google Scholar

[12] M. E. Kaliberda, L. M. Lytvynenko, and S. A. Pogarsky, “Scattering by infinite graphene strip grating with brake of periodicity,” in Proceedings of the 49th European Microwave Conference, 2019, pp. 1028–1031.10.23919/EuMC.2019.8910731Suche in Google Scholar

[13] G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys., vol. 103, p. 064302, 2008, https://doi.org/10.1063/1.2891452.Suche in Google Scholar

[14] V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “On the universal ac optical background in graphene,” New J. Phys., vol. 11, p. 095013, 2009, https://doi.org/10.1088/1367-2630/11/9/095013.Suche in Google Scholar

[15] G. W. Hanson, “Dyadic Green’s functions for an anisotropic, non-local model of biased graphene,” IEEE Trans. Antenn. Propag., vol. 56, pp. 747–757, 2008, https://doi.org/10.1109/tap.2008.917005.Suche in Google Scholar

[16] G. Lovat, G. W. Hanson, R. Araneo, and P. Burghignoli, “Semiclassical spatially dispersive intraband conductivity tensor and quantum capacitance of graphene,” Phys. Rev. B, vol. 87, p. 115429, 2013, https://doi.org/10.1103/physrevb.87.115429.Suche in Google Scholar

[17] G. Lovat, P. Burghignoli, and R. Araneo, “Low-frequency dominant-mode propagation in spatially dispersive graphene nanowaveguides,” IEEE Trans. Electromagn C., vol. 55, pp. 328–333, 2012.10.1109/TEMC.2012.2212247Suche in Google Scholar

[18] W. Fuscaldo, P. Burghignoli, P. Baccarelli, and A. Galli, “Complex mode spectra of graphene-based planar structures for THz applications,” J. Infrared Millim. Terahertz Waves, vol. 36, pp. 720–733, 2015, https://doi.org/10.1007/s10762-015-0178-0.Suche in Google Scholar

[19] P. A. Huidobro, M. Kraft, R. Kun, S. A. Maier, and J. B. Pendry, “Graphene, plasmons and transformation optics,” J. Opt., vol. 18, p. 044024, 2016, https://doi.org/10.1088/2040-8978/18/4/044024.Suche in Google Scholar

[20] Y. Zhao, S. Tao, D. Ding, and R. Chen, “A time-domain thin dielectric sheet (TD-TDS) integral equation method for scattering characteristics of tunable graphene,” IEEE Trans. Antenn. Propag., vol. 66, pp. 1366–1373, 2018, https://doi.org/10.1109/tap.2018.2790043.Suche in Google Scholar

[21] Y. Shao, J. J. Yang, and M. Huang, “A review of computational electromagnetic methods for graphene modelling,” Int. J. Antenn. Propag., vol. 2016, p. 7478621, 2016, https://doi.org/10.1155/2016/7478621.Suche in Google Scholar

[22] M. E. Kaliberda, L. M. Lytvynenko, and S. A. Pogarsky, “Modeling of graphene planar grating in the THz range by the method of singular integral equations,” Frequenz, vol. 72, pp. 277–284, 2018, https://doi.org/10.1515/freq-2017-0059.Suche in Google Scholar

[23] T. L. Zinenko, A. Matsushima, and A. I. Nosich, “Surface-plasmon, grating-mode, and slab-mode resonances in the H- and E-polarized THz wave scattering by a graphene strip grating embedded into a dielectric slab,” IEEE J. Sel. Top. Quant. Electron., vol. 23, p. 4601809, 2017, https://doi.org/10.1109/jstqe.2017.2684082.Suche in Google Scholar

[24] O. V. Shapoval, J. S. Gomez-Diaz, J. Perruisseau-Carrier, J. R. Mosig, and A. I. Nosich, “Integral equation analysis of plane wave scattering by coplanar graphene-strip gratings in the THz range,” IEEE Trans. Terahertz Sci. Technol., vol. 3, pp. 666–674, 2013, https://doi.org/10.1109/tthz.2013.2263805.Suche in Google Scholar

[25] S. V. Dukhopelnykov, R. Sauleau, M. Garcia-Vigueras, and A. I. Nosich, “Combined plasmon-resonance and photonic-jet effect in the THz wave scattering by dielectric rod decorated with graphene strip,” J. Appl. Phys., vol. 126, p. 023104, 2019, https://doi.org/10.1063/1.5093674.Suche in Google Scholar

[26] M. Kaliberda, L. Lytvynenko, and S. Pogarsky, “Simulation of infinite periodic graphene planar grating in the THz range by the method of singular integral equations,” Turk. J. Electr. Eng. Comput. Sci., vol. 26, pp. 1724–1735, 2018, https://doi.org/10.3906/elk-1712-92.Suche in Google Scholar

[27] M. E. Kaliberda, L. M. Lytvynenko, and S. A. Pogarsky, “Singular integral equations analysis of THz wave scattering by infinite graphene strip grating embedded into grounded gielectric slab,” J. Opt. Soc. Am. A, vol. 36, pp. 1787–1794, 2019, https://doi.org/10.1364/josaa.36.001787.Suche in Google Scholar

[28] M. E. Kaliberda, L. M. Lytvynenko, and S. A. Pogarsky, “THz waves scattering by finite graphene strip grating embedded into dielectric slab,” IEEE J. Quant. Electron., vol. 56, p. 8500107, 2020, https://doi.org/10.1109/jqe.2019.2950679.Suche in Google Scholar

[29] A. Y. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Edge and waveguide terahertz surface plasmon modes in graphene microribbons,” Phys. Rev. B, vol. 84, no. R, p. 161407, 2011, https://doi.org/10.1103/physrevb.84.161407.Suche in Google Scholar

[30] T. M. Slipchenko, M. L. Nesterov, L. Martin-Moreno, and A. Y. Nikitin, “Analytical solution for the diffraction of an electromagnetic wave by a graphene grating,” J. Opt., vol. 15, p. 114008, 2013, https://doi.org/10.1088/2040-8978/15/11/114008.Suche in Google Scholar

[31] A. B. Yakovlev, Y. R. Padooru, G. W. Hanson, A. Mafi, and S. Karbasi, “A generalized additional boundary condition for mushroom-type and bed-of-nails-type wire media,” IEEE Trans. Microw. Theor. Tech., vol. 59, pp. 527–532, 2010.10.1109/TMTT.2010.2090358Suche in Google Scholar

[32] M. Nishimoto and H. Ikuno, “Analysis of electromagnetic wave diffraction by a semi-infinite strip grating and evaluation of end-effects,” Progr. Electromag. Res., vol. 23, pp. 39–59, 1999, https://doi.org/10.2528/pier98101602.Suche in Google Scholar

[33] M. Nishimoto and H. Ikuno, “Numerical analysis of plane wave diffraction by a semi-infinite grating,” IEEE Trans. Fund. Mater., vol. 121, pp. 905–910, 2001, https://doi.org/10.1541/ieejfms1990.121.10_905.Suche in Google Scholar

[34] F. Capolino and M. Albani, “Truncation effects in a semi-infinite periodic array of thin strips: a discrete Wiener–Hopf formulation,” Radio Sci., vol. 44, pp. 1–14, 2009, https://doi.org/10.1029/2007rs003821.Suche in Google Scholar

[35] M. Kaliberda, L. Lytvynenko, and S. Pogarsky, “Method of singular integral equations in diffraction by semi-infinite grating: H-polarization case,” Turk. J. Electr. Eng. Comput. Sci., vol. 25, pp. 4496–4509, 2017, https://doi.org/10.3906/elk-1703-170.Suche in Google Scholar

[36] M. E. Kaliberda, L. M. Lytvynenko, and S. A. Pogarsky, “Electromagnetic interaction of two semi-infinite coplanar gratings of flat PEC strips with arbitrary gap between them,” J. Electromagn. Waves Appl., vol. 33, pp. 1557–1573, 2019, https://doi.org/10.1080/09205071.2019.1615996.Suche in Google Scholar

[37] G. I. Koshovy, “Electromagnetic wave scattering by strip systems with a variable fractal dimension,” Telecommun. Radio Eng., vol. 67, pp. 1321–1331, 2008, https://doi.org/10.1615/telecomradeng.v67.i15.10.Suche in Google Scholar

[38] G. I. Koshovy, “Scattering of H-polarized waves by pre-fractal diffraction gratings,” Telecommun. Radio Eng., vol. 71, pp. 961–973, 2012, https://doi.org/10.1615/telecomradeng.v71.i11.10.Suche in Google Scholar

[39] E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals, Oxford University Press, 1948.Suche in Google Scholar

[40] E. A. Guillemin, Communication Network, London, John Wiley and Sons, 1935.Suche in Google Scholar

[41] I. K. Lifanov, Singular Integral Equations and Discrete Vortices, Utrecht, VSP, 1996.10.1515/9783110926040Suche in Google Scholar

Received: 2020-03-08
Accepted: 2021-03-08
Published Online: 2021-05-10
Published in Print: 2021-07-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 29.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/freq-2020-0030/html
Button zum nach oben scrollen