Startseite 3-D printed CDRA for radiation beam reconfigurability and beamforming in C-band
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

3-D printed CDRA for radiation beam reconfigurability and beamforming in C-band

  • Maganti Apparao EMAIL logo und Godi Karunakar
Veröffentlicht/Copyright: 22. Januar 2021
Veröffentlichen auch Sie bei De Gruyter Brill
Frequenz
Aus der Zeitschrift Frequenz Band 75 Heft 3-4

Abstract

In this article, the design of a radiation beam-reconfigurable antenna using the reflector pins is presented. The reflector pins make a short or open connection with the ground, via switches and Plated Through Hole (PTH), which helps in controlling radiation characteristics of the proposed antenna. This design contains a simple 3D printed Cylindrical Dielectric Resonator Antenna that is located at the center of the substrate. The beam-sweeping of the antenna is attained by operating switches in different combinations of ON and OFF states. The reconfigurable CDRA operates at 4.5 GHz and covers all azimuth angles in four steps with a maximum measured gain of 6.6 dBi. This beam-switching antenna is very advantageous because of its trait of eliminating fade zones and beamforming.


Corresponding author: Maganti Apparao, Department of Electronics and Communication Engineering, Gitam Institute of Technology, GITAM Deemed to be University, Visakhapatnam, Andra Pradesh, India, E-mail:

Acknowledgment

The authors would like to acknowledge the Muwave Components Research and Development PVT. LTD. (MWCRD), Ghaziabad, India for providing the fabrication facility reported in this paper.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] C. K. Mak, C. R. Rowell, and R. D. Murch, “Lowcost reconfigurable landstorfer planar antenna array,” IEEE Trans. Antenn. Propag., vol. 57, no. 10, pp. 3051–3061, 2009, https://doi.org/10.1109/tap.2009.2028593.Suche in Google Scholar

[2] M. Kamran Saleem, M. A. S. Alkanhal, and A. F. Sheta, “Dual strip-excited dielectric resonator antenna with parasitic strips for radiation pattern re-configurability,” Int. J. Antenn. Propag., vol. 2014, pp. 1–8, 2014, https://doi.org/10.1155/2014/865620.Suche in Google Scholar

[3] S. H. Chen, J. S. Row, and K. L. Wong, “Reconfigurable square-ring patch antenna with pattern diversity,” IEEE Trans. Antenn. Propag., vol. 55, no. 2, pp. 472–475, 2007, https://doi.org/10.1109/tap.2006.889950.Suche in Google Scholar

[4] H. Zhong, Z. Zhang, W. Chen, Z. Feng, and M. F. Iskander, “A tripolarization antenna fed by proximity coupling and probe,” IEEE Antenn. Wireless Propag. Lett., vol. 8, pp. 465–467, 2009.10.1109/LAWP.2009.2020185Suche in Google Scholar

[5] W. S. Kang, J. A. Park, and Y. J. Yoon, “Simple reconfigurable antenna with radiation pattern,” Electron. Lett., vol. 44, no. 3, 2008, https://doi.org/10.1049/el:20082994.10.1049/el:20082994Suche in Google Scholar

[6] S. V. Hum, M. Okoniewski, and R. J. Davies, “Modeling and design of electronically tunable reflectarrays,” IEEE Trans. Antenn. Propag., vol. 55, no. 8, pp. 2200–2210, 2007, https://doi.org/10.1109/tap.2007.902002.Suche in Google Scholar

[7] T. Debogović and J. P. Carrier, “Array-fed partially reflective surface antenna with independent scanning and beamwidth dynamic control,” IEEE Trans. Antenn. Propag., vol. 62, no. 1, pp. 446–449, 2014, https://doi.org/10.1109/tap.2013.2287018.Suche in Google Scholar

[8] M. Grag and S. K. Sharma, “Wide-bandwidth dielectric resonator antenna with omni-directional radiation patterns for beam focusing properties in a circular array,” Int. J. RF Microw. Computer-Aided Eng., vol. 24, no. 1, pp. 92–101, 2014.10.1002/mmce.20717Suche in Google Scholar

[9] M. K. Saleem, M. A. S. Alkanhal, and A. F. Sheta, “Two element dielectric resonator antenna with beam switching,” ACES J., vol. 30, no. 11, 2015.Suche in Google Scholar

[10] M. K. Saleem, M. A. S. Alkanhal, and A. F. Sheta, “Switch beam dielectric resonator antenna array with four reconfigurable radiation patterns,” Microw. Opt. Technol. Lett., vol. 58, no. 1, 2016, https://doi.org/10.1002/mop.29499.Suche in Google Scholar

[11] R. F. Harrington, “Reactively controlled directive arrays,” IEEE Trans. Antenn. Propag., vol. 26, no. 3, pp. 390–395, 1978, https://doi.org/10.1109/tap.1978.1141852.Suche in Google Scholar

[12] K. Gyoda and T. Ohira, “Design of electronically steerable passive array radiator (ESPAR) antennas,” in IEEE Antennas and Propagation Society International Symposium, 2000, pp. 922–924.10.1109/APS.2000.875370Suche in Google Scholar

[13] C. Sun, Smart Antennas for 3G and Future Wireless Communications: Algorithms and Implementations, Ph.D. dissertation, Singapore, Nanyang Technological University, 2005.Suche in Google Scholar

[14] H. T. Liu, S. Gao, and T. H. Loh, “Compact dual-band antenna with electronic beam-steering and beamforming capability,” IEEE Antenn. Wireless Propag. Lett., vol. 10, pp. 1349–1352, 2011.10.1109/LAWP.2011.2177059Suche in Google Scholar

[15] H. T. Liu, S. Gao, and T. H. Loh, “Low-cost beam-switching circularlypolarised antenna using tunable high impedance surface,” in Proc. Loughborough Antennas Propag. Conf. (LAPC), 2010, pp. 1–4.Suche in Google Scholar

[16] H. T. Liu, S. Gao, and T. H. Loh, “Electrically small and low cost smart antenna for wireless communication,” IEEE Trans. Antenn. Propag., vol. 60, no. 3, pp. 1540–1549, 2012, https://doi.org/10.1109/tap.2011.2180300.Suche in Google Scholar

[17] C. Gu, S. Gao, M. Zhang, L. Xu, B. Sanz-Izquierdo, and M. Sobhy, “Design of broadband ESPAR antenna using inverted F monopoles,” in Proc. 8th Eur. Conf. Antennas Propag. (EuCAP), 2014, pp. 1814–1817.10.1109/EuCAP.2014.6902147Suche in Google Scholar

[18] Y. Tawk, J. Costantine, S. Hemmady, G. Balakrishnan, K. Avery, and C. G. Christodoulou, “Demonstration of a cognitive radio front end using an optically pumped reconfigurable antenna system (OPRAS),” IEEE Trans. Antenn. Propag., vol. 60, no. 2, pp. 1075–1083, 2012, https://doi.org/10.1109/tap.2011.2173139.Suche in Google Scholar

[19] G. H. Huff and J. T. Bernhard, “Integration of packaged RF MEMS switches with radiation pattern reconfigurable square spiral microstrip antennas,” IEEE Trans. Antenn. Propag., vol. 54, no. 2, pp. 464–469, 2006, https://doi.org/10.1109/tap.2005.863409.Suche in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/freq-2020-0004).


Received: 2020-01-08
Accepted: 2020-12-08
Published Online: 2021-01-22
Published in Print: 2021-03-26

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 29.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/freq-2020-0004/html
Button zum nach oben scrollen