Startseite A simple quad-band printed diversity antenna with high isolation without extra structure
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A simple quad-band printed diversity antenna with high isolation without extra structure

  • Azadeh Imani und Mohammad Sajjad Bayati ORCID logo EMAIL logo
Veröffentlicht/Copyright: 29. Juni 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper a Quad-band diversity antenna with a small size of 48 × 28 × 0.8 mm3 printed on FR4 substrate is presented that consists of two same pentagonal-shaped patch elements. Four arc-shaped slots in the radiating elements are introduced to obtain the quad-band operation with good return loss. The antenna is designed for covering 5.91 GHz in IEEE 802.11 b/g/n standards, 7.40 GHz in C-Band, 9.18 and 10.72 GHz in X-Band. To achieve the lowest coupling between two elements, three structures for embedding elements are investigated. The prototype is fabricated, and measured results are in good agreement with simulated results. The final antenna accomplishes a weak mutual coupling below −29.2 dB in the all operational bands. Radiation characteristics, radiation efficiency and diversity performance such as diversity gain and envelope correlation coefficient of the final structure, are presented.


Corresponding author: Mohammad Sajjad Bayati, Electrical and Computer Engineering Faculty, Razi University, Kermanshah, Iran, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] R. G. Vaughan and J. B. Andersen, “Antenna diversity in mobile communications,” IEEE Trans. Veh. Technol., vol. 36, no. 4, pp. 149–172, Nov. 1987, https://doi.org/10.1109/T-VT.1987.24115.Suche in Google Scholar

[2] S. Saunders and A. Aragón, Antennas and Propagation for Wireless Communication Systems, 2nd ed. Chichester, John Wiley & Sons, 2007.Suche in Google Scholar

[3] M. G. N. Alsath and M. Kanagasabai, “Planar pentaband antenna for vehicular communication application,” IEEE Antennas Wirel. Propag. Lett., vol. 13, pp. 110–113, 2014, https://doi.org/10.1109/lawp.2013.2295631.Suche in Google Scholar

[4] S. S. Sayeed, J. A. Ansari, M. Kumar, Gulman, and Komal, “An analysis of slots loaded rectangular stacked microstrip antenna for multiband operations,” 2nd Int. Conf. Telecommun. Networks, TEL-NET 2017, vol. 2018-Janua, pp. 1–5, 2018.10.1109/TEL-NET.2017.8343503Suche in Google Scholar

[5] M. Ding, R. Jin, J. Geng, X. Guo, and J. Chen, “A high-gain dual-band directional/ omnidirectional reconfigurable antenna for WLAN systems,” Int. J. RF Microw. Comput. Eng., vol. 18, no. 3, pp. 225–232, May 2008, https://doi.org/10.1002/mmce.20281.Suche in Google Scholar

[6] R. Mark, N. Mishra, K. Mandal, P. P. Sarkar, and S. Das, “Hexagonal nested loop fractal antenna for quad band wireless applications,” Frequenz, vol. 73, no. 3–4, pp. 99–108, Mar 2019, https://doi.org/10.1515/freq-2018-0115.Suche in Google Scholar

[7] N. Nafiza, B. S. Sreeja, R. C. Devi, and S. Radha, “Novel axe-shaped circular microstrip quad band antenna,” Microw. Opt. Technol. Lett., vol. 58, no. 2, pp. 399–402, 2016, https://doi.org/10.1002/mop.29572.Suche in Google Scholar

[8] H. B. Chu and H. Shirai, “A compact metamaterial quad-band antenna based on asymmetric e-crlh unit cells,” Prog. Electromagn. Res. C, vol. 81, no. November 2017, pp. 171–179, 2018, https://doi.org/10.2528/pierc17111605.Suche in Google Scholar

[9] K. L. Wong and L. C. Chou, “Internal composite monopole antenna for WLAN/WiMAX operation in a laptop computer,” Microw. Opt. Technol. Lett., vol. 48, no. 5, pp. 868–871, 2006, https://doi.org/10.1002/mop.21502.Suche in Google Scholar

[10] I. Nadeem and D. Y. Choi, Study on mutual coupling reduction technique for MIMO antennas, IEEE Access, 2019.10.1109/ACCESS.2018.2885558Suche in Google Scholar

[11] R. Mark, H. V. Singh, K. Mandal, and S. Das, “Reduced edge-to-edge spaced MIMO antenna using parallel coupled line resonator for WLAN applications, Microw,” Opt. Technol. Lett. vol. 61, no. 10, pp. 2374–2380, 2019, https://doi.org/10.1002/mop.31911.Suche in Google Scholar

[12] M. Abdullah, Q. Li, W. Xue, G. Peng, Y. He, and X. Chen, “Isolation enhancement of MIMO antennas using shorting pins,” J. Electromagn. Waves Appl. vol. 33, no. 10, pp. 1249–1263, 2019, https://doi.org/10.1080/09205071.2019.1606738.Suche in Google Scholar

[13] A. McHbal, N. A. Touhami, H. Elftouh, M. Moubadir, and A. Dkiouak, “Spatial and polarization diversity performance analysis of a compact MIMO antenna,” Procedia Manuf., vol. 32, pp. 647–652, 2019, https://doi.org/10.1016/j.promfg.2019.02.266.Suche in Google Scholar

[14] G. P. Rajashekar and M. R. Usha, “Design of MIMO antenna with high isolation using split ring resonator,” Int. Res. J. Eng. Technol., vol. 4, no. 5, pp. 1793–1796, 2017.Suche in Google Scholar

[15] S. R. Thummaluru, R. Kumar, and R. K. Chaudhary, “Isolation enhancement and radar cross section reduction of MIMO antenna with frequency selective surface,” IEEE Trans. Antennas Propag., vol. 66, no. 3, pp. 1595–1600, 2018, https://doi.org/10.1109/tap.2018.2794417.Suche in Google Scholar

[16] Q. Liu, Q. Liu, and F. Zhou, “A novel EBG-based MIMO antenna with enhanced isolation for WLAN applications,” in 2016 Progress in Electromagnetic Research Symposium (PIERS), vol. 1, pp. 2782–2785, 2016.10.1109/PIERS.2016.7735124Suche in Google Scholar

[17] I. Mohamed, M. Abdalla, and A. E. A. Mitkees, “Perfect isolation performance among two-element MIMO antennas,” AEU - Int. J. Electron. Commun., vol. 107, pp. 21–31, 2019, https://doi.org/10.1016/j.aeue.2019.05.014.Suche in Google Scholar

[18] M. S. Khan, A. D. Capobianco, M. F. Shafique, B. Ijaz, A. Naqvi, and B. D. Braaten, “Isolation enhancement of a wideband MIMO antenna using floating parasitic elements,” Microw. Opt. Technol. Lett., vol. 57, no. 7, pp. 1677–1682, Jul 2015, https://doi.org/10.1002/mop.29162.Suche in Google Scholar

[19] N. Pouyanfar, C. Ghobadi, J. Nourinia, K. Pedram, and M. Majidzadeh, “A compact multi-band MIMO antenna with high isolation for C and X bands using defected ground structure,” Radioengineering, vol. 27, no. 3, pp. 686–693, 2018, https://doi.org/10.13164/re.2018.0686.Suche in Google Scholar

[20] C. H. See, R. A. Abd-Alhameed, N. J. McEwan, S. M. R. Jones, R. Asif, and P. S. Excell, “Design of a printed MIMO/diversity monopole antenna for future generation handheld devices,” Int. J. RF Microw. Comput. Eng., vol. 24, no. 3, pp. 348–359, May 2014, https://doi.org/10.1002/mmce.20767.Suche in Google Scholar

[21] P. C. Nirmal, A. Nandgaonkar, S. Nalbalwar, and R. K. Gupta, “Compact wideband MIMO antenna for 4G WI-MAX, WLAN and UWB applications,” AEU - Int. J. Electron. Commun., vol. 99, pp. 284–292, 2019, https://doi.org/10.1109/piers.2016.7734261.Suche in Google Scholar

[22] M. Gulam Nabi Alsath, M. Kanagasabai, and B. Balasubramanian, “Implementation of slotted meander-line resonators for isolation enhancement in microstrip patch antenna arrays,” IEEE Antennas Wirel. Propag. Lett., vol. 12, pp. 15–18, 2013, https://doi.org/10.1109/lawp.2012.2237156.Suche in Google Scholar

[23] C. K. Ghosh, B. Mandal, and S. K. Parui, “Mutual coupling reduction of a dual-frequency microstrip antenna array by using u-shaped dgs and inverted u-shaped microstrip resonator,” Prog. Electromagn. Res. C, vol. 48, February, pp. 61–68, 2014, https://doi.org/10.2528/pierc14020603.Suche in Google Scholar

[24] R. G. Alsultan and G. Ö. Yetkin, “Mutual coupling suppression of closely spaced microstrip antennas by ladder-shaped conducting wall,” Int. J. Commun. Syst., vol. 31, no. 17, p. e3798, Nov. 2018, https://doi.org/10.1002/dac.3798.Suche in Google Scholar

[25] A. H. Radhi, R. Nilavalan, H. S. Al-Raweshidy, and N. A. Aziz, “A new quad-band diversity antenna with high isolation,” in IET Conference Publications, vol. CP741, pp. 307–311, 2018.10.1049/cp.2018.0666Suche in Google Scholar

[26] Y. Li, H. Zou, M. Wang, M. Peng, and G. Yang, “A quad-band eight-antenna array for 5G/WLAN MIMO in micro wireless access points,” in IEEE antennas and propagation society international symposium and USNC/URSI national radio science meeting, (APSURSI 2018), 2018, pp. 1953–1954.10.1109/APUSNCURSINRSM.2018.8609323Suche in Google Scholar

[27] S. Blanch, J. Romeu, and I. Corbella, “Exact representation of antenna system diversity performance from input parameter description,” Electron. Lett., vol. 39, no. 9, pp. 705–707, 2003, https://doi.org/10.1049/el:20030495.10.1049/el:20030495Suche in Google Scholar

[28] M. S. Sharawi, “Printed multi-band MIMO antenna systems and their performance metrics [wireless corner],” IEEE Antennas Propag. Mag., vol. 55, no. 5, pp. 218–232, 2013, https://doi.org/10.1109/map.2013.6735522.Suche in Google Scholar

Received: 2019-12-24
Accepted: 2020-05-05
Published Online: 2020-06-29
Published in Print: 2020-09-25

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 1.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/freq-2019-0220/html
Button zum nach oben scrollen