Abstract
Reconfigurable reflectarray/transmitarray antennas have found broad applications in wireless communication due to their low cost, small size, flexible design, and superior performance. However, one common drawback of most current designs is the complex reconfiguration operation, which restricts their further applications. In this research, a new design strategy for reconfigurable reflectarray/transmitarray antennas is proposed and shown. Specifically, a circularly polarized
Acknowledgements
This work was supported by State Key Laboratory of Meta-RF Electromagnetic Modulation Technology, Kuang-Chi Institute of Advanced Technology (No. JSGG20160819150017627), by the Ningbo Natural Science Foundation, by the Fundamental Research Funds for the Central University (No. JB180203), by the Shaanxi Natural Science Foundation (No. 2018JM6049), and the National Nature Science Foundation of China (No. 61571356).
References
[1] T. Cai, G.-M. Wang, H.-X. Xu, S.-W. Tang, and J.-G. Liang, “Polarization-independent broadband meta-surface for bifunctional antenna,” Opt. Express, vol. 24, pp. 22606–22615, 2016.10.1364/OE.24.022606Suche in Google Scholar PubMed
[2] H. F. Ma and T. J. Cui, “Three-dimensional broadband and broad-angle transformation-optics lens,” Nat. Commun., vol. 1, no. 8, pp. 124, 2010.10.1038/ncomms1126Suche in Google Scholar PubMed
[3] J. Ginn, B. Lail, J. Alda, and G. Boreman, “Planar infrared binary phase reflectarray,” Opt. Lett., vol. 33, pp. 779–781, 2018.10.1364/OL.33.000779Suche in Google Scholar PubMed
[4] H.-X. Xu, G.-M. Wang, K. Ma, and T. J. Cui, “Superscatterer illusions without using complementary media,” Adv. Opt. Mater., vol. 2, no. 6, pp. 572–580, 2014.10.1002/adom.201400011Suche in Google Scholar
[5] J. Ginn, B. Lail, J. Alda, and G. Boreman, “Sub-millimeter and infrared reflectarray,” U.S Patent 7623071 B2, 2009.Suche in Google Scholar
[6] F. Aieta, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities,” Nano Lett., vol. 12, pp. 1702–1706, 2012.10.1021/nl300204sSuche in Google Scholar PubMed
[7] J. Huang and J. Encinar, Reflectarray Antenna. Hoboken: Wiley-IEEE Press, 2008.10.1002/9780470178775Suche in Google Scholar
[8] L. Zou, W. Withayachumnankul, C. M. Shah, A. Mitchell, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Dielectric resonator nanoantennas at visible frequencies,” Opt. Express, vol. 21, pp. 1344–1352, 2013.10.1364/OE.21.001344Suche in Google Scholar PubMed
[9] T. Niu, W. Withayachumnankul, A. Upadhyay, P. Gutruf, D. Abbott, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Terahertz reflectarray as a polarizing beam splitter,” Opt. Express, vol. 22, pp. 16148–16160, 2014.10.1364/OE.22.016148Suche in Google Scholar PubMed
[10] Y. Monnai, K. Altmann, C. Jansen, M. Koch, H. Hillmer, and H. Shinoda, “Terahertz beam focusing based on plasmonic waveguide scattering,” Appl. Phys. Lett., vol. 101, pp. 151116, 2012.10.1063/1.4759042Suche in Google Scholar
[11] S. A. Amanatiadis, T. D. Karamanos, and N. V. Kantartzis, “Radiation efficiency enchancement of graphene THz antenna utilizing metamaterial substrates,” IEEE Antennas Wirel. Propag. Lett., vol. 16, pp. 2054–2057, 2017.10.1109/LAWP.2017.2695521Suche in Google Scholar
[12] B. Xu, Z. Wei, C. Wu, Y. Fan, Z. Wang, and H. Li, “Near-diffraction-limited focusing with gradient high-impedance metasurface,” Opt. Mater. Express, vol. 7, pp. 1141–1146, 2017.10.1364/OME.7.001141Suche in Google Scholar
[13] A. Pors et al., “Broadband Focusing Flat Mirrors Based on Plasmonic Gradient Metasurfaces,” Nano Lett., vol. 13, no. 2, pp. 829–834, 2013.10.1021/nl304761mSuche in Google Scholar PubMed
[14] N. Grady, J. Heyes, D. Chowdhury, Y. Zeng, M. Reiten, A. Azad, A. Taylor, D. Dalvit, and H. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Sci., vol. 340, pp. 1304–1307, 2013.10.1126/science.1235399Suche in Google Scholar PubMed
[15] T. Cao, C.-W. Wei, L.-B. Mao, and S. Wang, “Tuning of giant 2D-chiroptical response using achiral metasurface integrated with graphene,” Opt. Express, vol. 23, pp. 18620–18629, 2015.10.1364/OE.23.018620Suche in Google Scholar PubMed
[16] J. S. Gomez-Diaz and J. Perruisseau-Carrier “Microwave to THz properties of graphene and potential antenna applications,” Antennas and Propagation (ISAP), 2012 International Symposium on. IEEE, pp. 239–242, 2012.Suche in Google Scholar
[17] Y. Yin et al., “Research on terahertz reflectarray based on graphene surface and PET substrate,” 2017 10th UK-Europe-China Workshop on Millimetre Waves and Terahertz Technologies (UCMMT), pp. 1–3, 2017.10.1109/UCMMT.2017.8068357Suche in Google Scholar
[18] E. Carrasco and J. Perruisseau-Carrier, “Reflectarray Antenna at Terahertz Using Graphene,” IEEE Antennas Wirel. Propag. Lett., vol. 12, pp. 253–256, 2013.10.1109/LAWP.2013.2247557Suche in Google Scholar
[19] T. Chen and S. He, “Frequency-tunable circular polarization beam splitter using a graphene-dielectric sub-wavelength film,” Opt. Express, vol. 22, no. 16, pp. 19748–19757, 2014.10.1364/OE.22.019748Suche in Google Scholar PubMed
[20] B. J. Schultz, R. V. Dennis, V. Lee, and S. Banerjee, “An electronic structure perspective of graphene interfaces,” Nanoscale, vol. 6, no. 7, pp. 3444–3466, 2014.10.1039/c3nr06923kSuche in Google Scholar PubMed
[21] P. Weis, J. L. Garcia-Pomar, M. Höh, B. Reinhard, A. Brodyanski, and M. Rahm, “Spectrally wide-band terahertz wave modulator based on optically tuned graphene,” ACS Nano, vol. 6, no. 10, pp. 9118–9124, 2012.10.1021/nn303392sSuche in Google Scholar PubMed
[22] V. P. Gudynin, S. G. Sharapov, and J. P. Carbotte, “Magneto-optical conductivity in graphene,” J. Phys.: Condens. Matter, vol. 19, no. 2, pp. 026222, 2007.Suche in Google Scholar
[23] G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys., vol. 103, no. 6, pp. 064302–064302-8, 2018.10.1063/1.2891452Suche in Google Scholar
© 2019 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Research Articles
- Reconfigurable Graphene Circular Polarization Reflectarray/Transmitarray Antenna
- A Design of the Beam-Adjustable Metasurface Based on the Plasma Metamaterial with the Dielectric Matching Layers
- Hexagonal Nested Loop Fractal Antenna for Quad Band Wireless Applications
- Wideband High Gain Cylindrical Dielectric Resonator Antenna for X-Band Applications
- Design of Balanced Filter with Wide Stopband by Using Discriminating Coupling
- Development of Multistage Digital Filters for Dither Signal Removal in Ring Laser Gyro
- Device-to-Device Radio Link Analysis at 2.4, 3.4, 5.2, 28 and 60 GHz in Indoor Communication Environments
- Inverse Scattering Related to Cylindrical Bodies Buried in a Lossy Circular Cylinder with Resistive Boundary
Artikel in diesem Heft
- Frontmatter
- Research Articles
- Reconfigurable Graphene Circular Polarization Reflectarray/Transmitarray Antenna
- A Design of the Beam-Adjustable Metasurface Based on the Plasma Metamaterial with the Dielectric Matching Layers
- Hexagonal Nested Loop Fractal Antenna for Quad Band Wireless Applications
- Wideband High Gain Cylindrical Dielectric Resonator Antenna for X-Band Applications
- Design of Balanced Filter with Wide Stopband by Using Discriminating Coupling
- Development of Multistage Digital Filters for Dither Signal Removal in Ring Laser Gyro
- Device-to-Device Radio Link Analysis at 2.4, 3.4, 5.2, 28 and 60 GHz in Indoor Communication Environments
- Inverse Scattering Related to Cylindrical Bodies Buried in a Lossy Circular Cylinder with Resistive Boundary