Startseite Studying Photonics Crystal Cavities by Design and Simulation of a 1 to 8 Optical Demultiplexer
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Studying Photonics Crystal Cavities by Design and Simulation of a 1 to 8 Optical Demultiplexer

  • Abolfazl Abolhaasani-Kaleibar und Alireza Andalib EMAIL logo
Veröffentlicht/Copyright: 13. März 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper we are going to design and simulating a 1 to 8 demultiplexer based on Photonic Crystal (PhC) that where in wavelengths was guided to her coupled cavity and after that our Intended output. This structure is good Selection to communication operations that their wavelengths are around 1550nm. High Q factor, high transmission speed and low crosstalk between wavelengths are the advantages of this structure. The area of this structure is 560μm2. The wavelengths was selected to this work are 1602.1 nm, 1598.3 nm, 1595.2 nm, 1591.8 nm, 1588.6 nm, 1585.4 nm, 1582.4 nm, 1579.6 nm. In this paper we are going to prepare the crosstalk between outputs and our main goal is giving low crosstalk between outputs.

References

[1] Y.-P. Yang, K.-C. Lin, I.-C. Yang, K.-Y. Lee, Y.-J. Lin, W.-Y. Lee, and Y.-T. Tsai, “All-optical photonic crystal AND gate with multiple operating wavelengths,” Opt. Commun., vol. 297, pp. 165–168, 2013.10.1016/j.optcom.2013.01.035Suche in Google Scholar

[2] Y. Zhang, Y. Zhang, and B. Li, “Optical switches and logic gates based on self-collimated beams in two-dimensional photonic crystals,” Opt. Express., vol. 15, pp. 9287, 2007.10.1364/OE.15.009287Suche in Google Scholar PubMed

[3] B. Saghirzadeh Darki and N. Granpayeh, “Improving the performance of a photonic crystal ring-resonator-based channel drop filter using particle swarm optimization method,” Opt. Commun., vol. 283, pp. 4099–4103, 2010.10.1016/j.optcom.2010.06.013Suche in Google Scholar

[4] S. Johnson and J. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express., vol. 8, pp. 173, 2001.10.1364/OE.8.000173Suche in Google Scholar PubMed

[5] A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method. Artech House, 1995.Suche in Google Scholar

[6] F. Mehdizadeh and H. Alipour-Banaei, “Bandgap management in two-dimensional photonic crystal thue-morse structures,” J. Opt. Commun., vol. 34, pp. 61–65, 2013.10.1515/joc-2013-0007Suche in Google Scholar

[7] H. Alipour-Banaei and F. Mehdizadeh, “Bandgap calculation of 2D hexagonal photonic crystal structures based on regression analysis,” J. Opt. Commun, vol. 34, pp. 1–9, 2013.10.1515/joc-2013-0033Suche in Google Scholar

[8] Z. Wu, K. Xie, and H. Yang, “Band gap properties of two-dimensional photonic crystals with rhombic lattice,” Opt. - Int. J. Light Electron Opt., vol. 123, pp. 534–536, 2012.10.1016/j.ijleo.2011.05.020Suche in Google Scholar

[9] D. Liu, Y. Gao, A. Tong, and S. Hu, “Absolute photonic band gap in 2D honeycomb annular photonic crystals,” Phys. Lett. A, vol. 379, pp. 214–217, 2015.10.1016/j.physleta.2014.11.030Suche in Google Scholar

[10] H. Alipour-Banaei and F. Mehdizadeh, “Significant role of photonic crystal resonant cavities in WDM and DWDM communication tunable filters,” Opt. - Int. J. Light Electron Opt., vol. 124, pp. 2639–2644, 2013.10.1016/j.ijleo.2012.07.029Suche in Google Scholar

[11] A. Tavousi and M. A. Mansouri-Birjandi, “Study on the similarity of photonic crystal ring resonator cavity modes and whispering-gallery-like modes in order to design more efficient optical power dividers,” Photonic Netw. Commun., vol. 32, pp. 160–170, 2016.10.1007/s11107-015-0592-1Suche in Google Scholar

[12] S. Marziye Mousavizadeh, M. Soroosh, and F. Mehdizadeh, “Photonic crystal-based demultiplexers using defective resonant cavity,” Optoelectron. Adv. Mater. Rapid Commun., vol. 9, pp. 28–31, 2015.Suche in Google Scholar

[13] H. Guo, Q. Liao, T. Yu, S. Chen, and Y. Huang, “Design of high efficiency and large separating angle beam splitter based on photonic crystal cavity resonator,” Mod. Phys. Lett. B, vol. 25, pp. 1963–1969, 2011.10.1142/S0217984911027212Suche in Google Scholar

[14] V. Zabelin, L. A. Dunbar, N. Le Thomas, R. Houdré, M. V. Kotlyar, L. O’Faolain, and T. F. Krauss, “Self-collimating photonic crystal polarization beam splitter,” Opt. Lett., vol. 32, pp. 530, 2007.10.1364/OL.32.000530Suche in Google Scholar

[15] Z. Huang, X. Yang, Y. Wang, X. Meng, R. Fan, and L. Wang, “Ultrahigh extinction ratio of polarization beam splitter based on hybrid photonic crystal waveguide structures,” Opt. Commun., vol. 354, pp. 9–13, 2015.10.1016/j.optcom.2015.05.040Suche in Google Scholar

[16] X. Yu and S. Fan, “Bends and splitters for self-collimated beams in photonic crystals,” Appl. Phys. Lett., vol. 83, pp. 3251, 2003.10.1063/1.1621736Suche in Google Scholar

[17] G. Manzacca, D. Paciotti, A. Marchese, M. S. Moreolo, and G. Cincotti, “2D photonic crystal cavity-based WDM multiplexer,” Photonics Nanostructures Fundam. Appl., vol. 5, pp. 164–170, 2007.10.1016/j.photonics.2007.03.003Suche in Google Scholar

[18] L. Jiu-Sheng, L. Han, and Z. Le, “Compact four-channel terahertz demultiplexer based on directional coupling photonic crystal,” Opt. Commun, vol. 350, pp. 248–251, 2015.10.1016/j.optcom.2015.04.034Suche in Google Scholar

[19] H. Alipour-Banaei, F. Mehdizadeh, and S. Serajmohammadi, “A novel 4-channel demultiplexer based on photonic crystal ring resonators,” Opt. - Int. J. Light Electron Opt, vol. 124, pp. 5964–5967, 2013.10.1016/j.ijleo.2013.04.117Suche in Google Scholar

[20] A. Rostami, F. Nazari, H. A. Banaei, and A. Bahrami, “A novel proposal for DWDM demultiplexer design using modified-T photonic crystal structure,” Photonics Nanostructures - Fundam. Appl., vol. 8, pp. 14–22, 2010.10.1016/j.photonics.2009.12.002Suche in Google Scholar

[21] K. Venkatachalam, D. S. Kumar, and S. Robinson, “Performance analysis of 2D-photonic crystal based eight channel wavelength division demultiplexer,” Opt. - Int. J. Light Electron Opt, vol. 127, pp. 8819–8826, 2016.10.1016/j.ijleo.2016.06.112Suche in Google Scholar

[22] D. Bernier, X. Le Roux, A. Lupu, D. Marris-Morini, L. Vivien, and E. Cassan, “Compact, low cross-talk CWDM demultiplexer using photonic crystal superprism,” Opt. Express., vol. 16, pp. 17209, 2008.10.1364/OE.16.017209Suche in Google Scholar

[23] R. Talebzadeh, M. Soroosh, and F. Mehdizadeh, “Improved low channel spacing high quality factor four-channel demultiplexer based on photonic crystal ring resonators,” Opt. Appl., vol. 46, pp. 553–564, 2016.Suche in Google Scholar

[24] F. Mehdizadeh, M. Soroosh, and H. Alipour-Banaei, “An optical demultiplexer based on photonic crystal ring resonators,” Opt. - Int. J. Light Electron Opt., vol. 127, pp. 8706–8709, 2016.10.1016/j.ijleo.2016.06.086Suche in Google Scholar

[25] K. Venkatachalam, D. S. Kumar, and S. Robinson, “Investigation on 2D photonic crystal-based eight-channel wavelength-division demultiplexer,” Photonic Netw. Commun, vol. 34, pp. 100–110, 2017.10.1007/s11107-016-0675-7Suche in Google Scholar

[26] M. A. Mansouri-Birjandi and M. R. Rakhshani, “A new design of tunable four-port wavelength demultiplexer by photonic crystal ring resonators,” Opt. - Int. J. Light Electron Opt., vol. 124, pp. 5923–5926, 2013.10.1016/j.ijleo.2013.04.128Suche in Google Scholar

[27] H. Alipour-Banaei, F. Mehdizadeh, and M. Hassangholizadeh-Kashtiban, “A novel proposal for all optical PhC-based demultiplexers suitable for DWDM applications,” Opt. Quantum Electron., vol. 45, pp. 1063–1075, 2013.10.1007/s11082-013-9717-xSuche in Google Scholar

[28] H. Alipour-Banaei, S. Serajmohammadi, and F. Mehdizadeh, “Effect of scattering rods in the frequency response of photonic crystal demultiplexers,” J. Optoelectron. Adv. Mater., vol. 17, pp. 259–263, 2015.Suche in Google Scholar

[29] A. Sharkawy, S. Shi, D. W. Prather, and R. A. Soref, “Electro-optical switching using coupled photonic crystal waveguides,” Opt. Express., vol. 10, pp. 1048, 2002.10.1364/OE.10.001048Suche in Google Scholar PubMed

[30] H. G. Teo, A. Q. Liu, J. Singh, M. B. Yu, and T. Bourouina, “Design and simulation of MEMS optical switch using photonic bandgap crystal,” Microsyst. Technol., vol. 10, pp. 400–406, 2004.10.1007/s00542-004-0416-1Suche in Google Scholar

[31] Z.-H. Zhu, W.-M. Ye, J.-R. Ji, X.-D. Yuan, and C. Zen, “High-contrast light-by-light switching and AND gate based on nonlinear photonic crystals,” Opt. Express., vol. 14, pp. 1783–1788, 2006.10.1364/OE.14.001783Suche in Google Scholar

[32] M. F. Yanik, S. Fan, M. Soljačić, and J. D. Joannopoulos, “All-optical transistor action with bistable switching in a photonic crystal cross-waveguide geometry,” Opt. Lett., vol. 28, pp. 2506, 2003.10.1364/OL.28.002506Suche in Google Scholar

[33] R. Selim, D. Pinto, and S. S. A. Obayya, “Novel fast photonic crystal multiplexer-demultiplexer switches,” Opt. Quantum Electron., vol. 42, pp. 425–433, 2011.10.1007/s11082-011-9438-ySuche in Google Scholar

[34] M. A. Mansouri-Birjandi, A. Tavousi, and M. Ghadrdan, “Full-optical tunable add/drop filter based on nonlinear photonic crystal ring resonators,” Photonics Nanostructures - Fundam. Appl., vol. 21, pp. 44–51, 2016.10.1016/j.photonics.2016.06.002Suche in Google Scholar

[35] A. Tavousi, M. A. Mansouri-Birjandi, M. Ghadrdan, and M. Ranjbar-Torkamani, “Application of photonic crystal ring resonator nonlinear response for full-optical tunable add–Drop filtering,” Photonic Netw. Commun., vol. 34, pp. 131–139, 2017.10.1007/s11107-016-0680-xSuche in Google Scholar

[36] H. Alipour-Banaei, S. Serajmohammadi, F. Mehdizadeh, and M. Hassangholizadeh-Kashtiban, “Special optical communication filter based on Thue Morse photonic crystal structure,” Opt. Appl., vol. 46, pp. 145–152, 2016.Suche in Google Scholar

[37] H. Alipour-Banaei, M. Hassangholizadeh-Kashtiban, and F. Mehdizadeh, “WDM and DWDM optical filter based on 2D photonic crystal Thue–Morse structure,” Opt. - Int. J. Light Electron Opt, vol. 124, pp. 4416–4420, 2013.10.1016/j.ijleo.2013.03.027Suche in Google Scholar

[38] F. Mehdizadeh, H. Alipour-Banaei, and S.,. Serajmohammadi, “Channel-drop filter based on a photonic crystal ring resonator,” J. Opt., vol. 15, pp. 075401, 2013.10.1088/2040-8978/15/7/075401Suche in Google Scholar

[39] H. Alipour-Banaei, F. Mehdizadeh, and M. Hassangholizadeh-Kashtiban, “A new proposal for PCRR-based channel drop filter using elliptical rings,” Phys. E Low-Dimensional Syst. Nanostructures., vol. 56, pp. 211–215, 2014.10.1016/j.physe.2013.07.018Suche in Google Scholar

[40] H. Alipour-Banaei, M. Jahanara, and F. Mehdizadeh, “T-shaped channel drop filter based on photonic crystal ring resonator,” Opt. - Int. J. Light Electron Opt., vol. 125, pp. 5348–5351, 2014.10.1016/j.ijleo.2014.06.056Suche in Google Scholar

[41] M. Youcef Mahmoud, G. Bassou, and A. Taalbi, “A new optical add–Drop filter based on two-dimensional photonic crystal ring resonator,” Opt. - Int. J. Light Electron Opt., vol. 124, pp. 2864–2867, 2013.10.1016/j.ijleo.2012.08.072Suche in Google Scholar

[42] A. Taalbi, G. Bassou, and M. Youcef Mahmoud, “New design of channel drop filters based on photonic crystal ring resonators,” Opt. - Int. J. Light Electron Opt., vol. 124, pp. 824–827, 2013.10.1016/j.ijleo.2012.01.045Suche in Google Scholar

[43] M. Youcef Mahmoud, G. Bassou, A. Taalbi, and Z. M. Chekroun, “Optical channel drop filters based on photonic crystal ring resonators,” Opt. Commun., vol. 285, pp. 368–372, 2012.10.1016/j.optcom.2011.09.068Suche in Google Scholar

[44] Z. Rashki and S. J. Seyyed Mahdavi Chabok, “Novel design of optical channel drop filters based on two-dimensional photonic crystal ring resonators,” Opt. Commun, 2016.10.1016/j.optcom.2016.08.077Suche in Google Scholar

[45] Y. Wang, D. Chen, G. Zhang, J. Wang, and S. Tao, “A super narrow band filter based on silicon 2D photonic crystal resonator and reflectors,” Opt. Commun, vol. 363, pp. 13–20, 2016.10.1016/j.optcom.2015.10.070Suche in Google Scholar

[46] S. Sahel, R. Amri, L. Bouaziz, D. Gamra, M. Lejeune, M. Benlahsen, K. Zellama, and H. Bouchriha, “Optical filters using Cantor quasi-periodic one dimensional photonic crystal based on Si/SiO2,” Superlattices Microstruct, vol. 97, pp. 429–438, 2016.10.1016/j.spmi.2016.07.007Suche in Google Scholar

[47] A. Dideban, H. Habibiyan, and H. Ghafoorifard, “Photonic crystal channel drop filters based on fractal structures,” Phys. E Low-Dimensional Syst. Nanostructures., vol. 63, pp. 304–310, 2014.10.1016/j.physe.2014.06.009Suche in Google Scholar

[48] M. Hassangholizadeh-Kashtiban, R. Sabbaghi-Nadooshan, and H. Alipour-Banaei, “A novel all optical reversible 4×2 encoder based on photonic crystals,” Opt. - Int. J. Light Electron Opt, vol. 126, pp. 2368–2372, 2015.10.1016/j.ijleo.2015.05.140Suche in Google Scholar

[49] S. Gholamnejad and M. Zavvari, “Design and analysis of all-optical 4–2 binary encoder based on photonic crystal,” Opt. Quantum Electron., vol. 49, pp. 302, 2017.10.1007/s11082-017-1144-ySuche in Google Scholar

[50] T. A. Moniem, “All-optical digital 4×2 encoder based on 2D photonic crystal ring resonators,” J. Mod. Opt, vol. 63, pp. 735–741, 2016.10.1080/09500340.2015.1094580Suche in Google Scholar

[51] H. Alipour-Banaei, M. G. Rabati, P. Abdollahzadeh-Badelbou, and F. Mehdizadeh, “Application of self-collimated beams to realization of all optical photonic crystal encoder,” Phys. E Low-Dimensional Syst. Nanostructures., vol. 75, pp. 77–85, 2016.10.1016/j.physe.2015.08.011Suche in Google Scholar

[52] F. Mehdizadeh, M. Soroosh, and H. Alipour-Banaei, “Proposal for 4-to-2 optical encoder based on photonic crystals,” IET Optoelectron, vol. 11, pp. 29–35(6), 2017.10.1049/iet-opt.2016.0022Suche in Google Scholar

[53] F. Mehdizadeh, M. Soroosh, H. Alipour-Banaei, and E. Farshidi, “Ultra-fast analog-to-digital converter based on a nonlinear triplexer and an optical coder with a photonic crystal structure,” Appl. Opt., vol. 56, pp. 1799–1806, 2017.10.1364/AO.56.001799Suche in Google Scholar PubMed

[54] B. Youssefi, M. K. Moravvej-Farshi, and N. Granpayeh, “Two bit all-optical analog-to-digital converter based on nonlinear Kerr effect in 2D photonic crystals,” Opt. Commun, vol. 285, pp. 3228–3233, 2012.10.1016/j.optcom.2012.02.081Suche in Google Scholar

[55] B. Miao, C. Chen, A. Sharkway, S. Shi, and D. W. Prather, “Two bit optical analog-to-digital converter based on photonic crystals,” Opt. Express., vol. 14, pp. 7966, 2006.10.1364/OE.14.007966Suche in Google Scholar PubMed

[56] K. Fasihi, “All-optical analog-to-digital converters based on cascaded 3-dB power splitters in 2D photonic crystals,” Opt. - Int. J. Light Electron Opt, vol. 125, pp. 6520–6523, 2014.10.1016/j.ijleo.2014.08.030Suche in Google Scholar

[57] F. Mehdizadeh, M. Soroosh, H. Alipour-Banaei, and E. Farshidi, “All optical 2-bit analog to digital converter using photonic crystal based cavities,” Opt. Quantum Electron., vol. 49, pp. 38, 2017.10.1007/s11082-016-0880-8Suche in Google Scholar

[58] F. Mehdizadeh, M. Soroosh, H. Alipour-Banaei, and E. Farshidi, “A Novel Proposal for All Optical Analog-to-Digital Converter Based on Photonic Crystal Structures,” IEEE Photonics J, vol. 9, pp. 1–11, 2017.10.1109/JPHOT.2017.2690362Suche in Google Scholar

[59] A. Tavousi, M.A. Mansouri-Birjandi, and M. Saffari, “Successive approximation-like 4-bit full-optical analog-to-digital converter based on Kerr-like nonlinear photonic crystal ring resonators,” Phys. E Low-Dimensional Syst. Nanostructures, vol. 83, pp. 101–106, 2016.10.1016/j.physe.2016.04.007Suche in Google Scholar

[60] T. A. Moniem, “All optical active high decoder using integrated 2D square lattice photonic crystals,” J. Mod. Opt., vol. 62, pp. 2015, 1643–1649.10.1080/09500340.2015.1061061Suche in Google Scholar

[61] S. Serajmohammadi, H. Alipour-Banaei, and F. Mehdizadeh, “All optical decoder switch based on photonic crystal ring resonators,” Opt. Quantum Electron., vol. 47, pp. 1109–1115, 2014.10.1007/s11082-014-9967-2Suche in Google Scholar

[62] Z. Chen, Z. Li, and B. Li, “A 2-to-4 decoder switch in SiGe/Si multimode inteference,” Opt. Express, vol. 14, pp. 2671, 2006.10.1364/OE.14.002671Suche in Google Scholar PubMed

[63] F. Mehdizadeh, M. Soroosh, and H. Alipour-Banaei, “A novel proposal for optical decoder switch based on photonic crystal ring resonators,” Opt. Quantum Electron., vol. 48, pp. 20, 2015.10.1007/s11082-015-0313-0Suche in Google Scholar

[64] H. Alipour-Banaei, F. Mehdizadeh, S. Serajmohammadi, and M. Hassangholizadeh-Kashtiban, “A 2*4 all optical decoder switch based on photonic crystal ring resonators,” J. Mod. Opt, vol. 62, pp. 430–434, 2014.10.1080/09500340.2014.957743Suche in Google Scholar

[65] H. Alipour-Banaei, M. G. Rabati, P. Abdollahzadeh-Badelbou, and F. Mehdizadeh, “Effect of self-collimated beams on the operation of photonic crystal decoders,” J. Electromagn. Waves Appl., vol. 30, pp. 1440–1448, 2016.10.1080/09205071.2016.1202785Suche in Google Scholar

[66] F. Mehdizadeh, H. Alipour-Banaei, and S. Serajmohammadi, “Study the role of non-linear resonant cavities in photonic crystal-based decoder switches,” J. Mod. Opt., vol. 64, pp. 1233–1239, 2017.10.1080/09500340.2016.1275854Suche in Google Scholar

[67] H. Alipour-Banaei, S. Serajmohammadi, and F. Mehdizadeh, “Optical wavelength demultiplexer based on photonic crystal ring resonators,” Photonic Netw. Commun., vol. 29, pp. 146–150, 2014.10.1007/s11107-014-0483-xSuche in Google Scholar

[68] F. Mehdizadeh and M. Soroosh, “A new proposal for eight-channel optical demultiplexer based on photonic crystal resonant cavities,” Photonic Netw. Commun., vol. 31, pp. 65–70, 2016.10.1007/s11107-015-0531-1Suche in Google Scholar

[69] R. Talebzadeh, M. Soroosh, Y. S. Kavian, and F. Mehdizadeh, “All-optical 6- and 8-channel demultiplexers based on photonic crystal multilayer ring resonators in Si/C rods,” Photonic Netw. Commun, vol. 34, pp. 248–257, 2017.10.1007/s11107-017-0688-xSuche in Google Scholar

Received: 2017-08-13
Published Online: 2018-03-13
Published in Print: 2018-08-28

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/freq-2017-0189/html
Button zum nach oben scrollen