Startseite Mathematik Harmonic analysis on a finite homogeneous space II: The Gelfand–Tsetlin decomposition
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Harmonic analysis on a finite homogeneous space II: The Gelfand–Tsetlin decomposition

  • Fabio Scarabotti und Filippo Tolli
Veröffentlicht/Copyright: 12. Februar 2010
Forum Mathematicum
Aus der Zeitschrift Band 22 Heft 5

Abstract

In this paper, we continue the analysis of [Scarabotti, Tolli, Proc. London Math. Soc.: 2009] on finite homogeneous spaces whose associated permutation representation decomposes with multiplicity. We extend the theory of Gelfand–Tsetlin bases to permutation representations. Then we study several concrete examples on the symmetric groups, generalizing the Gelfand pair of the Johnson scheme. We also extend part of the Okounkov–Vershik theory to the Young permutation module Ma. In particular we constuct explicit Gelfand–Tsetlin bases for the representation Sn–1,1. We also give an explicit Gelfand–Tsetlin decomposition for the permutation module associated with a three-parts partitions, using James reformulation of the Young rule by means of intertwining operators (Radon transforms). Several statistical applications, refining previous work by Diaconis, are given. Finally, the spectrum of several invariant operators is determined.

Received: 2008-10-08
Revised: 2009-01-27
Published Online: 2010-02-12
Published in Print: 2010-September

© de Gruyter 2010

Heruntergeladen am 4.2.2026 von https://www.degruyterbrill.com/document/doi/10.1515/forum.2010.047/html
Button zum nach oben scrollen