Startseite Mathematik Time-step heat problem on the mesh: asymptotic behavior and decay rates
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Time-step heat problem on the mesh: asymptotic behavior and decay rates

  • Luciano Abadias ORCID logo , Jorge González-Camus ORCID logo EMAIL logo und Silvia Rueda ORCID logo
Veröffentlicht/Copyright: 31. März 2023

Abstract

In this article, we study the asymptotic behavior and decay of the solution of the fully discrete heat problem. We show basic properties of its solutions, such as the mass conservation principle and their moments, and we compare them to the known ones for the continuous analogue problems. We present the fundamental solution, which is given in terms of spherical harmonics, and we state pointwise and p estimates for that. Such considerations allow to prove decay and large-time behavior results for the solutions of the fully discrete heat problem, giving the corresponding rates of convergence on p spaces.


Communicated by Christopher D. Sogge


Award Identifier / Grant number: PID2019-105979GB-I00

Funding source: D.G. Aragón

Award Identifier / Grant number: E26-17R

Funding source: Universidad de Zaragoza

Award Identifier / Grant number: JIUZ-2019-CIE-01

Award Identifier / Grant number: 11230182

Award Identifier / Grant number: 11230856

Funding statement: The first named author has been partly supported by Project PID2019-105979GB-I00 of Ministry of Science of Spain, Project E26-17R of D.G. Aragón, and by Project JIUZ-2019-CIE-01 for Young Researchers, Fundación Ibercaja and Universidad de Zaragoza, Spain. The second named author has been partly supported by Agencia Nacional de Investigación y Desarrollo (ANID), FONDECYT INICIACIÓN 2023, Grant 11230182, and by the Competition for Research Regular Projects, year 2022, code LPR22-08, Universidad Tecnológica Metropolitana. The third named author has been partly supported by Agencia Nacional de Investigación y Desarrollo (ANID), Grant 11230856, and by the Competition for Research Regular Projects, year 2022, code LPR22-08, Universidad Tecnológica Metropolitana.

References

[1] A. Abadías and E. Alvarez, Asymptotic behavior for the discrete in time heat equation, Mathematics 10 (2022), no. 17, Paper No. 3128. 10.3390/math10173128Suche in Google Scholar

[2] L. Abadias and M. De León-Contreras, Discrete Hölder spaces and their characterization via semigroups associated with the discrete Laplacian and kernel estimates, J. Evol. Equ. 22 (2022), no. 4, Paper No. 91. 10.1007/s00028-022-00851-1Suche in Google Scholar

[3] L. Abadias, M. De León-Contreras and J. L. Torrea, Non-local fractional derivatives. Discrete and continuous, J. Math. Anal. Appl. 449 (2017), no. 1, 734–755. 10.1016/j.jmaa.2016.12.006Suche in Google Scholar

[4] L. Abadías, J. González Camus, P. J. Miana and J. C. Pozo, Large time behaviour for the heat equation on ; moments and decay rates, J. Math. Anal. Appl. 500 (2021), no. 2, Article ID 125137. 10.1016/j.jmaa.2021.125137Suche in Google Scholar

[5] R. P. Agarwal, C. Cuevas and C. Lizama, Regularity of Difference Equations on Banach Spaces, Springer, Cham, 2014. 10.1007/978-3-319-06447-5Suche in Google Scholar

[6] D. R. Anderson, R. I. Avery and J. M. Davis, Existence and uniqueness of solutions to discrete diffusion equations, Comput. Math. Appl. 45 (2003), 1075–1085. 10.1016/S0898-1221(03)00087-7Suche in Google Scholar

[7] H. Bateman, Some simple differential difference equations and the related functions, Bull. Amer. Math. Soc. 49 (1943), 494–512. 10.1090/S0002-9904-1943-07927-XSuche in Google Scholar

[8] A. Benchellal, T. Poinot and J.-C. Trigeassou, Approximation and identification of diffusive interfaces by fractional models, Signal Process. 86 (2006), no. 10, 2712–2727. 10.1016/j.sigpro.2006.02.025Suche in Google Scholar

[9] C. M. Bender and S. A. Orszag, Advanced Mathematical Methods for Scientists and Engineers, McGraw-Hill, New York, 1978. Suche in Google Scholar

[10] S. Blunck, Analyticity and discrete maximal regularity on L p -spaces, J. Funct. Anal. 183 (2001), no. 1, 211–230. 10.1006/jfan.2001.3740Suche in Google Scholar

[11] S. Blunck, Maximal regularity of discrete and continuous time evolution equations, Studia Math. 146 (2001), no. 2, 157–176. 10.4064/sm146-2-3Suche in Google Scholar

[12] O. Ciaurri, T. A. Gillespie, L. Roncal, J. L. Torrea and J. L. Varona, Harmonic analysis associated with a discrete Laplacian, J. Anal. Math. 132 (2017), 109–131. 10.1007/s11854-017-0015-6Suche in Google Scholar

[13] O. Ciaurri, L. Roncal, P. R. Stinga, J. L. Torrea and J. L. Varona, Nonlocal discrete diffusion equations and the fractional discreteLaplacian, regularity and applications, Adv. Math. 330 (2018), 688–738. 10.1016/j.aim.2018.03.023Suche in Google Scholar

[14] E. B. Davies, Gaussian upper bounds for the heat kernels of some second-order operators on Riemannian manifolds, J. Funct. Anal. 80 (1988), no. 1, 16–32. 10.1016/0022-1236(88)90062-6Suche in Google Scholar

[15] E. B. Davies, L p spectral theory of higher-order elliptic differential operators, Bull. Lond. Math. Soc. 29 (1997), no. 5, 513–546. 10.1112/S002460939700324XSuche in Google Scholar

[16] M. Del Pino and J. Dolbeault, Asymptotic behavior of nonlinear diffusions, Math. Res. Lett. 10 (2003), no. 4, 551–557. 10.4310/MRL.2003.v10.n4.a13Suche in Google Scholar

[17] J. Duoandikoetxea and E. Zuazua, Moments, masses de Dirac et décomposition de fonctions, C. R. Acad. Sci. Paris Sér. I Math. 315 (1992), no. 6, 693–698. Suche in Google Scholar

[18] K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Grad. Texts in Math. 194, Springer, New York, 1980. Suche in Google Scholar

[19] A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcendental Functions. Vol. I, McGraw-Hill, New York, 1953. Suche in Google Scholar

[20] M. Escobedo and E. Zuazua, Large time behavior for convection-diffusion equations in 𝐑 N , J. Funct. Anal. 100 (1991), no. 1, 119–161. 10.1016/0022-1236(91)90105-ESuche in Google Scholar

[21] E. Estrada, E. Hameed, N. Hatano and M. Langer, Path Laplacian operators and superdiffusive processes on graphs. I. One-dimensional case, Linear Algebra Appl. 523 (2017), 307–334. 10.1016/j.laa.2017.02.027Suche in Google Scholar

[22] S. N. Ethier and T. G. Kurtz, Fleming–Viot processes in population genetics, SIAM J. Control Optim. 31 (1993), no. 2, 345–386. 10.1137/0331019Suche in Google Scholar

[23] W. Feller, An Introduction to Probability Theory and its Applications. Vol. II, 2nd ed., John Wiley & Sons, New York, 1971. Suche in Google Scholar

[24] G. B. Folland, Introduction to Partial Differential Equations, 2nd ed., Princeton University, Princeton, 1995. Suche in Google Scholar

[25] J. B. J. Fourier, Théorie analytique de la chaleur, Cambridge Libr. Coll., Cambridge University, Cambridge, 2009. 10.1017/CBO9780511693229Suche in Google Scholar

[26] A. Gmira and L. Véron, Asymptotic behaviour of the solution of a semilinear parabolic equation, Monatsh. Math. 94 (1982), no. 4, 299–311. 10.1007/BF01667384Suche in Google Scholar

[27] A. Gmira and L. Véron, Large time behaviour of the solutions of a semilinear parabolic equation in 𝐑 N , J. Differential Equations 53 (1984), no. 2, 258–276. 10.1016/0022-0396(84)90042-1Suche in Google Scholar

[28] J. González-Camus, V. Keyantuo, C. Lizama and M. Warma, Fundamental solutions for discrete dynamical systems involving the fractional Laplacian, Math. Methods Appl. Sci. 42 (2019), no. 14, 4688–4711. 10.1002/mma.5685Suche in Google Scholar

[29] J. González-Camus, C. Lizama and P. J. Miana, Fundamental solutions for semidiscrete evolution equations via Banach algebras, Adv. Difference Equ. 2021 (2021), Paper No. 35. 10.1186/s13662-020-03206-7Suche in Google Scholar PubMed PubMed Central

[30] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 7th ed., Elsevier/Academic Press, Amsterdam, 2007. Suche in Google Scholar

[31] Y. Jiang, X. Wang and Y. Wang, On a stochastic heat equation with first order fractional noises and applications to finance, J. Math. Anal. Appl. 396 (2012), no. 2, 656–669. 10.1016/j.jmaa.2012.07.003Suche in Google Scholar

[32] T. Kemmochi, Discrete maximal regularity for abstract Cauchy problems, Studia Math. 234 (2016), no. 3, 241–263. 10.4064/sm8495-7-2016Suche in Google Scholar

[33] V. Keyantuo, C. Lizama and M. Warma, Lattice dynamical systems associated with a fractional Laplacian, Numer. Funct. Anal. Optim. 40 (2019), no. 11, 1315–1343. 10.1080/01630563.2019.1602542Suche in Google Scholar

[34] S. Kusuoka and D. Stroock, Long time estimates for the heat kernel associated with a uniformly subelliptic symmetric second order operator, Ann. of Math. (2) 127 (1988), no. 1, 165–189. 10.2307/1971418Suche in Google Scholar

[35] N. N. Lebedev, Special Functions and Their Applications, Dover, New York, 1972. Suche in Google Scholar

[36] P. Li, Large time behavior of the heat equation on complete manifolds with nonnegative Ricci curvature, Ann. of Math. (2) 124 (1986), no. 1, 1–21. 10.2307/1971385Suche in Google Scholar

[37] C. Lizama and M. Murillo-Arcila, On a connection between the N-dimensional fractional Laplacian and 1-D operators on lattices, J. Math. Anal. Appl. 511 (2022), no. 1, Paper No. 126051. 10.1016/j.jmaa.2022.126051Suche in Google Scholar

[38] C. Lizama and L. Roncal, Hölder–Lebesgue regularity and almost periodicity for semidiscrete equations with a fractional Laplacian, Discrete Contin. Dyn. Syst. 38 (2018), no. 3, 1365–1403. 10.3934/dcds.2018056Suche in Google Scholar

[39] S. Mustapha, Gaussian estimates for heat kernels on Lie groups, Math. Proc. Cambridge Philos. Soc. 128 (2000), no. 1, 45–64. 10.1017/S0305004199003783Suche in Google Scholar

[40] J. R. Norris, Long-time behaviour of heat flow: global estimates and exact asymptotics, Arch. Ration. Mech. Anal. 140 (1997), no. 2, 161–195. 10.1007/s002050050063Suche in Google Scholar

[41] F. Oberhettinger and L. Badii, Tables of Laplace Transforms, Springer, New York, 1973. 10.1007/978-3-642-65645-3Suche in Google Scholar

[42] A. Slavík, Discrete Bessel functions and partial difference equations, J. Difference Equ. Appl. 24 (2018), no. 3, 425–437. 10.1080/10236198.2017.1416107Suche in Google Scholar

[43] A. Slavík, Asymptotic behavior of solutions to the semidiscrete diffusion equation, Appl. Math. Lett. 106 (2020), Article ID 106392. 10.1016/j.aml.2020.106392Suche in Google Scholar

[44] A. Slavík, Spatial maxima, unimodality, and asymptotic behaviour of solutions to discrete diffusion-type equations, J. Difference Equ. Appl. 28 (2022), no. 1, 126–140. 10.1080/10236198.2022.2027395Suche in Google Scholar

[45] A. Slavík and P. Stehlík, Dynamic diffusion-type equations on discrete-space domains, J. Math. Anal. Appl. 427 (2015), no. 1, 525–545. 10.1016/j.jmaa.2015.02.056Suche in Google Scholar

[46] P. Stehlík and J. Volek, Nonuniqueness of implicit lattice Nagumo equation, Appl. Math. 64 (2019), no. 2, 169–194. 10.21136/AM.2019.0270-18Suche in Google Scholar

[47] F. G. Tricomi and A. Erdélyi, The asymptotic expansion of a ratio of gamma functions, Pacific J. Math. 1 (1951), 133–142. 10.2140/pjm.1951.1.133Suche in Google Scholar

[48] J. L. Vázquez, Asymptotic behaviour methods for the heat equation. Convergence to the Gaussian, preprint (2017), https://arxiv.org/abs/1706.10034. Suche in Google Scholar

[49] E. Zuazua, Large time asymptotics for heat and dissipative wave equations, preprint (2003), https://www.researchgate.net/publication/228560600. Suche in Google Scholar

[50] A. Zygmund, Trigonometric Series.Vols. I, II, 2nd ed., Cambridge University, New York, 1959. Suche in Google Scholar

Received: 2022-11-08
Revised: 2022-12-22
Published Online: 2023-03-31
Published in Print: 2023-11-01

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 4.2.2026 von https://www.degruyterbrill.com/document/doi/10.1515/forum-2022-0334/html
Button zum nach oben scrollen