Startseite Graphs represented by Ext
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Graphs represented by Ext

  • Mohsen Asgharzadeh , Mohammad Golshani ORCID logo EMAIL logo und Saharon Shelah
Veröffentlicht/Copyright: 28. März 2025
Forum Mathematicum
Aus der Zeitschrift Forum Mathematicum

Abstract

This paper opens and discusses the question originally due to Daniel Herden, who asked for which graph ( μ , R ) we can find a family { 𝔾 α : α < μ } of abelian groups such that for each α , β μ , Ext ( 𝔾 α , 𝔾 β ) = 0 iff ( α , β ) R . In this regard, we present four results. First, we give a connection to Quillen’s small object argument which helps Ext vanishes and use it to present a useful criteria to the question. Suppose λ = λ 0 and μ = 2 λ . We apply Jensen’s diamond principle along with the criteria to present λ-free abelian groups representing bipartite graphs. Third, we use a version of the black box to construct in ZFC, a family of 1 -free abelian groups representing bipartite graphs. Finally, applying forcing techniques, we present a consistent positive answer for general graphs.

MSC 2020: 03C60; 20A15; 13L05

Communicated by Manfred Droste


Funding statement: The second author’s research has been supported by a grant from IPM (No. 1403030417). The second author’s work is based upon research funded by Iran National Science Foundation (INSF) under project No. 4027168. The third author research partially supported by the Israel Science Foundation (ISF) grant no: 1838/19, and Israel Science Foundation (ISF) grant no: 2320/23; Research partially supported by the grant “Independent Theories” NSF-BSF, (BSF 3013005232). Publication 1217 in Shelah’s list.

References

[1] K. J. Devlin, A note on the combinatorial principles ( E ) , Proc. Amer. Math. Soc. 72 (1978), no. 1, 163–165. Suche in Google Scholar

[2] P. C. Eklof and A. H. Mekler, Almost Free Modules, North-Holland Math. Libr. 65, North-Holland, Amsterdam, 2002. Suche in Google Scholar

[3] L. Fuchs, Abelian Groups, Springer Monogr. Math., Springer, Cham, 2015. Suche in Google Scholar

[4] R. Göbel and S. Shelah, Cotorsion theories and splitters, Trans. Amer. Math. Soc. 352 (2000), no. 11, 5357–5379. Suche in Google Scholar

[5] R. Göbel, S. Shelah and S. L. Wallutis, On the lattice of cotorsion theories, J. Algebra 238 (2001), no. 1, 292–313. Suche in Google Scholar

[6] R. Göbel and J. Trlifaj, Approximations and Endomorphism Algebras of Modules. Volume 1, 2, De Gruyter Exp. Math. 41, Walter de Gruyter, Berlin, 2012. Suche in Google Scholar

[7] D. Herden, Personal communication with Saharon Shelah. Suche in Google Scholar

[8] M. Hovey, Model Categories, Math. Surveys Monogr. 63, American Mathematical Society, Providence, 1999. Suche in Google Scholar

[9] T. Jech, Set Theory, Springer Monogr. Math., Springer, Berlin, 2003. Suche in Google Scholar

[10] K. Kunen, Set Theory, Stud. Logic Found. Math. 102, North-Holland, Amsterdam, 1980. Suche in Google Scholar

[11] A. Mekler, A. Rosłanowski and S. Shelah, On the p-rank of Ext, Israel J. Math. 112 (1999), 327–356. Suche in Google Scholar

[12] L. Salce, Cotorsion theories for abelian groups, Symposia Mathematica. Vol. 23, Academic Press, London (1979), 11–32. Suche in Google Scholar

[13] S. Shelah, Infinite abelian groups, Whitehead problem and some constructions, Israel J. Math. 18 (1974), 243–256. Suche in Google Scholar

[14] S. Shelah, A combinatorial principle and endomorphism rings. I. On p-groups, Israel J. Math. 49 (1984), no. 1–3, 239–257. Suche in Google Scholar

[15] S. Shelah, Categoricity of an abstract elementary class in two successive cardinals, Israel J. Math. 126 (2001), 29–128. Suche in Google Scholar

[16] S. Shelah, Not collapsing cardinals κ in ( & l t ; κ ) -support iterations, Israel J. Math. 136 (2003), 29–115. Suche in Google Scholar

[17] S. Shelah and L. Strüngmann, On the p-rank of Ext ( A , B ) for countable abelian groups A and B, Israel J. Math. 199 (2014), no. 2, 567–572. Suche in Google Scholar

[18] C. A. Weibel, An Introduction to Homological Algebra, Cambridge Stud. Adv. Math. 38, Cambridge University, Cambridge, 1994. Suche in Google Scholar

Received: 2022-06-07
Published Online: 2025-03-28

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 3.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/forum-2022-0170/html
Button zum nach oben scrollen