Startseite A new class of uncertainty principles for the k-Hankel wavelet transform
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A new class of uncertainty principles for the k-Hankel wavelet transform

  • Hatem Mejjaoli ORCID logo und Firdous A. Shah ORCID logo EMAIL logo
Veröffentlicht/Copyright: 31. März 2023

Abstract

The k-Hankel wavelet transform is a novel addition to the class of wavelet transforms which relies on a pair of generalized translation and dilation operators governed by the well-known k-Hankel transform. The aim of this paper is to explore a class of new uncertainty principles associated with the k-Hankel wavelet transform, including the Benedick–Amrein–Berthier and Shapiro’s uncertainty inequalities. Nevertheless, we shall also establish certain local-type uncertainty principles abreast of the mean dispersion theorems for the k-Hankel wavelet transform.


Communicated by Siegfried Echterhoff


Acknowledgements

The authors are deeply indebted to the referees for constructive comments and help in improving the content of this article. The first author dedicates this paper to Professor Khalifa Trimèche and thanks Professor Man Wah Wong for his help.

References

[1] W. Beckner, Pitt’s inequality and the uncertainty principle, Proc. Amer. Math. Soc. 123 (1995), no. 6, 1897–1905. 10.1090/S0002-9939-1995-1254832-9Suche in Google Scholar

[2] S. Ben Saïd and L. Deleaval, Translation operator and maximal function for the (k,1)-generalized Fourier transform, J. Funct. Anal. 279 (2020), no. 8, Article ID 108706. 10.1016/j.jfa.2020.108706Suche in Google Scholar

[3] S. Ben Saïd, T. Kobayashi and B. Ørsted, Laguerre semigroup and Dunkl operators, Compos. Math. 148 (2012), no. 4, 1265–1336. 10.1112/S0010437X11007445Suche in Google Scholar

[4] M. Benedicks, On Fourier transforms of functions supported on sets of finite Lebesgue measure, J. Math. Anal. Appl. 106 (1985), no. 1, 180–183. 10.1016/0022-247X(85)90140-4Suche in Google Scholar

[5] L. Debnath and F. A. Shah, Wavelet Transforms and Their Applications, 2nd ed., Birkhäuser/Springer, New York, 2015. 10.1007/978-0-8176-8418-1Suche in Google Scholar

[6] L. Debnath and F. A. Shah, Lecture Notes on Wavelet Transforms, Compact Textb. Math., Birkhäuser/Springer, Cham, 2017. 10.1007/978-3-319-59433-0Suche in Google Scholar

[7] C. F. Dunkl, Differential-difference operators associated to reflection groups, Trans. Amer. Math. Soc. 311 (1989), no. 1, 167–183. 10.1090/S0002-9947-1989-0951883-8Suche in Google Scholar

[8] G. B. Folland and A. Sitaram, The uncertainty principle: A mathematical survey, J. Fourier Anal. Appl. 3 (1997), no. 3, 207–238. 10.1007/BF02649110Suche in Google Scholar

[9] S. Ghobber and P. Jaming, Uncertainty principles for integral operators, Studia Math. 220 (2014), no. 3, 197–220. 10.4064/sm220-3-1Suche in Google Scholar

[10] D. V. Gorbachev, V. I. Ivanov and S. Y. Tikhonov, Pitt’s inequalities and uncertainty principle for generalized Fourier transform, Int. Math. Res. Not. IMRN 2016 (2016), no. 23, 7179–7200. 10.1093/imrn/rnv398Suche in Google Scholar

[11] V. P. Havin and B. Jöricke, The Uncertainty Principle in Harmonic Analysis, Springer, Berlin, 1994. 10.1007/978-3-642-78377-7Suche in Google Scholar

[12] T. R. Johansen, Weighted inequalities and uncertainty principles for the ( k , a ) -generalized Fourier transform, Internat. J. Math. 27 (2016), no. 3, Article ID 1650019. 10.1142/S0129167X16500191Suche in Google Scholar

[13] E. Malinnikova, Orthonormal sequences in L 2 ( 𝐑 d ) and time frequency localization, J. Fourier Anal. Appl. 16 (2010), no. 6, 983–1006. 10.1007/s00041-009-9114-9Suche in Google Scholar

[14] H. Mejjaoli, Spectral theorems associated with the ( k , a ) -generalized wavelet multipliers, J. Pseudo-Differ. Oper. Appl. 9 (2018), no. 4, 735–762. 10.1007/s11868-018-0260-1Suche in Google Scholar

[15] H. Mejjaoli, New results for the Hankel two-wavelet multipliers, J. Taibah Univ. Sci. 13 (2019), 32–40. 10.1080/16583655.2018.1521711Suche in Google Scholar

[16] H. Mejjaoli, ( k , a ) -generalized wavelet transform and applications, J. Pseudo-Differ. Oper. Appl. 11 (2020), no. 1, 55–92. 10.1007/s11868-019-00291-5Suche in Google Scholar

[17] H. Mejjaoli, Time-frequency analysis associated with the k-Hankel Gabor transform on d , J. Pseudo-Differ. Oper. Appl. 12 (2021), no. 3, Paper No. 41. 10.1007/s11868-021-00399-7Suche in Google Scholar

[18] H. Mejjaoli, New uncertainty principles for the ( k , a ) -generalized wavelet transform, Rev. Un. Mat. Argentina 63 (2022), no. 1, 239–279. 10.33044/revuma.2051Suche in Google Scholar

[19] H. Mejjaoli and F. A. Shah, Uncertainty principles associated with the directional short-time Fourier transform, J. Math. Phys. 62 (2021), no. 6, Paper No. 063511. 10.1063/5.0046426Suche in Google Scholar

[20] H. Mejjaoli and N. Sraieb, Uncertainty principles for the continuous Dunkl Gabor transform and the Dunkl continuous wavelet transform, Mediterr. J. Math. 5 (2008), no. 4, 443–466. 10.1007/s00009-008-0161-2Suche in Google Scholar

[21] H. Mejjaoli and K. Trimèche, k-Hankel two-wavelet theory and localization operators, Integral Transforms Spec. Funct. 31 (2020), no. 8, 620–644. 10.1080/10652469.2020.1723011Suche in Google Scholar

[22] M. Rösler, Positivity of Dunkl’s intertwining operator, Duke Math. J. 98 (1999), no. 3, 445–463. 10.1215/S0012-7094-99-09813-7Suche in Google Scholar

[23] S. Saitoh, Integral Transforms, Reproducing Kernels and Their Applications, Pitman Res. Notes Math. Ser. 369, Longman, Harlow, 1997. Suche in Google Scholar

[24] F. A. Shah, K. S. Nisar, W. Z. Lone and A. Y. Tantary, Uncertainty principles for the quadratic-phase Fourier transform, Math. Methods Appl. Sci. 44 (2021), no. 13, 10416–10431. 10.1002/mma.7417Suche in Google Scholar

[25] K. Trimèche, Generalized Wavelets and Hypergroups, Gordon and Breach Science, Amsterdam, 1997. Suche in Google Scholar

[26] M. W. Wong, Wavelet Transforms and Localization Operators, Oper. Theory Adv. Appl. 136, Birkhäuser, Basel, 2002. 10.1007/978-3-0348-8217-0Suche in Google Scholar

Received: 2022-04-30
Revised: 2022-12-13
Published Online: 2023-03-31
Published in Print: 2023-05-01

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 20.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/forum-2022-0137/html
Button zum nach oben scrollen