Startseite Explicit Burgess-like subconvex bounds for GL2 × GL1
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Explicit Burgess-like subconvex bounds for GL2 × GL1

Veröffentlicht/Copyright: 16. Juli 2020

Abstract

We make the polynomial dependence on the fixed representation π in our previous subconvex bound of L(12,πχ) for GL2×GL1 explicit, especially in terms of the usual conductor 𝐂(πfin). There is no clue that the original choice, due to Michel and Venkatesh, of the test function at the infinite places should be the optimal one. Hence we also investigate a possible variant of such local choices in some special situations.

MSC 2010: 11M41

Communicated by Jan Bruinier


Funding source: Leverhulme Trust

Award Identifier / Grant number: RPG-2018-401

Funding statement: The preparation of the paper scattered during the stays of the author’s in FIM at ETHZ, at Alféd Renyi Institute in Hungary supported by the MTA Rényi Intézet Lendület Automorphic Research Group, in TAN at EPFL and in the School of Mathematical Sciences at Queen Mary University of London. The author would like to thank these institutes for their hospitality, and the support of the Leverhulme Trust Research Project Grant RPG-2018-401.

Acknowledgements

The author would like to thank the referee for careful reading.

References

[1] E. Assing, On sup-norm bounds. Part I: Ramified Maass newforms over number fields, preprint (2017), https://arxiv.org/abs/1710.00362v1. Suche in Google Scholar

[2] V. Blomer and G. Harcos, Hybrid bounds for twisted L-functions, J. Reine Angew. Math. 621 (2008), 53–79. 10.1515/CRELLE.2008.058Suche in Google Scholar

[3] V. Blomer and G. Harcos, Twisted L-functions over number fields and Hilbert’s eleventh problem, Geom. Funct. Anal. 20 (2010), no. 1, 1–52. 10.1007/s00039-010-0063-xSuche in Google Scholar

[4] V. Blomer and G. Harcos, Addendum: Hybrid bounds for twisted L-functions, J. Reine Angew. Math. 694 (2014), 241–244. 10.1515/crelle-2012-0091Suche in Google Scholar

[5] V. Blomer, G. Harcos, P. Maga and D. Milićević, The sup-norm problem for GL(2) over number fields, preprint (2016), https://arxiv.org/abs/1605.09360v1. Suche in Google Scholar

[6] D. Bump, Automorphic Forms and Representations, Cambridge Stud. Adv. Math. 55, Cambridge University Press, Cambridge, 1997. 10.1017/CBO9780511609572Suche in Google Scholar

[7] C. J. Bushnell and G. Henniart, An upper bound on conductors for pairs, J. Number Theory 65 (1997), no. 2, 183–196. 10.1006/jnth.1997.2142Suche in Google Scholar

[8] L. Clozel and E. Ullmo, Équidistribution de mesures algébriques, Compos. Math. 141 (2005), no. 5, 1255–1309. 10.1112/S0010437X0500148XSuche in Google Scholar

[9] M. Cowling, U. Haagerup and R. Howe, Almost L2 matrix coefficients, J. Reine Angew. Math. 387 (1988), 97–110. 10.1515/crll.1988.387.97Suche in Google Scholar

[10] W. Duke, Hyperbolic distribution problems and half-integral weight Maass forms, Invent. Math. 92 (1988), no. 1, 73–90. 10.1007/BF01393993Suche in Google Scholar

[11] W. Duke, J. Friedlander and H. Iwaniec, Bounds for automorphic L-functions, Invent. Math. 112 (1993), no. 1, 1–8. 10.1007/s002220000104Suche in Google Scholar

[12] W. Duke, J. B. Friedlander and H. Iwaniec, Bounds for automorphic L-functions. II, Invent. Math. 115 (1994), no. 2, 219–239. 10.1007/BF01231759Suche in Google Scholar

[13] W. Duke, J. B. Friedlander and H. Iwaniec, Bounds for automorphic L-functions. III, Invent. Math. 143 (2001), no. 2, 221–248. 10.1007/s002220000104Suche in Google Scholar

[14] W. Duke, J. B. Friedlander and H. Iwaniec, The subconvexity problem for Artin L-functions, Invent. Math. 149 (2002), no. 3, 489–577. 10.1007/s002220200223Suche in Google Scholar

[15] A. Erdélyi, Asymptotic Expansions, Dover Publications, New York, 1956. Suche in Google Scholar

[16] L. C. Evans and M. Zworski, Lectures on semiclassical analysis (version 0.2). Suche in Google Scholar

[17] S. Gelbart and H. Jacquet, A relation between automorphic representations of GL(2) and GL(3), Ann. Sci. Éc. Norm. Supér. (4) 11 (1978), no. 4, 471–542. 10.24033/asens.1355Suche in Google Scholar

[18] S. S. Gelbart, Automorphic forms on adèle groups, Ann. of Math. Stud. 83, Princeton University Press, Princeton, 1975. 10.1515/9781400881611Suche in Google Scholar

[19] R. Godement, Notes on Jacquet–Langlands’ Theory, The Institute for Advanced Study, , 1970. Suche in Google Scholar

[20] J. Hoffstein and P. Lockhart, Coefficients of Maass forms and the Siegel zero. With an appendix by Dorian Goldfeld, Hoffstein and Daniel Lieman, Ann. of Math. (2) 140 (1994), no. 1, 161–181. 10.2307/2118543Suche in Google Scholar

[21] Y. Hu, P. D. Nelson and A. Saha, Some analytic aspects of automorphic forms on GL(2) of minimal type, Comment. Math. Helv. 94 (2019), no. 4, 767–801. 10.4171/CMH/473Suche in Google Scholar

[22] A. Ichino, Trilinear forms and the central values of triple product L-functions, Duke Math. J. 145 (2008), no. 2, 281–307. 10.1215/00127094-2008-052Suche in Google Scholar

[23] H. Iwaniec, Prime geodesic theorem, J. Reine Angew. Math. 349 (1984), 136–159. 10.1515/crll.1984.349.136Suche in Google Scholar

[24] H. Iwaniec, Fourier coefficients of modular forms of half-integral weight, Invent. Math. 87 (1987), no. 2, 385–401. 10.1007/BF01389423Suche in Google Scholar

[25] H. Iwaniec and E. Kowalski, Analytic Number Theory, Amer. Math. Soc. Colloq. Publ. 53, American Mathematical Society, Providence, 2004. 10.1090/coll/053Suche in Google Scholar

[26] H. Iwaniec and P. Michel, The second moment of the symmetric square L-functions, Ann. Acad. Sci. Fenn. Math. 26 (2001), no. 2, 465–482. Suche in Google Scholar

[27] H. Jacquet, Archimedean Rankin–Selberg integrals, Automorphic Forms and L-Functions II. Local Aspects, Contemp. Math. 489, American Mathematical Society, Providence (2009), 57–172. H. Jacquet and R. P. Langlands, Automorphic Forms on GL(2), Lecture Notes in Math. 114, Springer, Berlin, 1970. 10.1090/conm/489/09547Suche in Google Scholar

[28] H. Jacquet, I. I. Piatetski-Shapiro and J. Shalika, Conducteur des représentations du groupe linéaire, Math. Ann. 256 (1981), no. 2, 199–214. 10.1007/BF01450798Suche in Google Scholar

[29] H. Jacquet, I. I. Piatetskii-Shapiro and J. A. Shalika, Rankin–Selberg convolutions, Amer. J. Math. 105 (1983), no. 2, 367–464. 10.2307/2374264Suche in Google Scholar

[30] A. Knightly and C. Li, Traces of Hecke Operators, Math. Surveys Monogr. 133, American Mathematical Society, Providence, 2006. 10.1090/surv/133Suche in Google Scholar

[31] S. Lang, Algebraic Number Theory, 2nd ed., Grad. Texts in Math. 110, Springer, New York, 2003. Suche in Google Scholar

[32] W. Z. Luo and P. Sarnak, Quantum ergodicity of eigenfunctions on PSL2(𝐙)\𝐇2, Publ. Math. Inst. Hautes Études Sci. 81 (1995), 207–237. 10.1007/BF02699377Suche in Google Scholar

[33] P. Michel and A. Venkatesh, The subconvexity problem for GL2, Publ. Math. Inst. Hautes Études Sci. 111 (2010), 171–271. 10.1007/s10240-010-0025-8Suche in Google Scholar

[34] P. D. Nelson, A. Pitale and A. Saha, Bounds for Rankin–Selberg integrals and quantum unique ergodicity for powerful levels, J. Amer. Math. Soc. 27 (2014), no. 1, 147–191. 10.1090/S0894-0347-2013-00779-1Suche in Google Scholar

[35] A. A. Popa, Whittaker newforms for Archimedean representations, J. Number Theory 128 (2008), no. 6, 1637–1645. 10.1016/j.jnt.2007.06.005Suche in Google Scholar

[36] D. Ramakrishnan, Modularity of the Rankin-Selberg L-series, and multiplicity one for SL(2), Ann. of Math. (2) 152 (2000), no. 1, 45–111. 10.2307/2661379Suche in Google Scholar

[37] D. Ramakrishnan and R. J. Valenza, Fourier Analysis on Number Fields, Grad. Texts in Math. 186, Springer, New York, 1999. 10.1007/978-1-4757-3085-2Suche in Google Scholar

[38] A. Saha, Hybrid sup-norm bounds for Maass newforms of powerful level, Algebra Number Theory 11 (2017), no. 5, 1009–1045. 10.2140/ant.2017.11.1009Suche in Google Scholar

[39] A. Venkatesh, Sparse equidistribution problems, period bounds and subconvexity, Ann. of Math. (2) 172 (2010), no. 2, 989–1094. 10.4007/annals.2010.172.989Suche in Google Scholar

[40] G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, 1944. Suche in Google Scholar

[41] T. C. Watson, Rankin Triple Products and Quantum Chaos, ProQuest LLC, Ann Arbor, 2002; Ph.D. thesis, Princeton University, 2002. Suche in Google Scholar

[42] R. Wong, Asymptotic expansions of Hankel transforms of functions with logarithmic singularities, Comp. Math. Appl. 3 (1977), 271–289. 10.1016/0898-1221(77)90084-0Suche in Google Scholar

[43] H. Wu, Burgess-like subconvex bounds for GL2×GL1, Geom. Funct. Anal. 24 (2014), no. 3, 968–1036. 10.1007/s00039-014-0277-4Suche in Google Scholar

[44] H. Wu, Explicit subconvexity for GL2 and some applications (Appendix with N. Andersen), preprint (2018), https://arxiv.org/abs/1812.04391. Suche in Google Scholar

[45] H. Wu, Burgess-like subconvexity for GL1, Compos. Math. 155 (2019), no. 8, 1457–1499. 10.1112/S0010437X19007309Suche in Google Scholar

Received: 2019-03-26
Revised: 2020-02-13
Published Online: 2020-07-16
Published in Print: 2020-09-01

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 1.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/forum-2019-0074/html
Button zum nach oben scrollen