Startseite Mathematik A formula for the expected volume of the Wiener sausage with constant drift
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A formula for the expected volume of the Wiener sausage with constant drift

  • Yuji Hamana EMAIL logo und Hiroyuki Matsumoto
Veröffentlicht/Copyright: 14. Juni 2016

Abstract

We consider the Wiener sausage for a Brownian motion with a constant drift up to time t associated with a closed ball. In the two or more dimensional cases, we obtain the explicit form of the expected volume of the Wiener sausage. The result says that it can be represented by the sum of the mean volumes of the multi-dimensional Wiener sausages without a drift. In addition, we show that the leading term of the expected volume of the Wiener sausage is written as κt(1+o[1]) for large t by a constant κ. The expression for κ is of a complicated form, but it converges to the known constant as the drift tends to 0.

MSC 2010: 60J65; 44A10

Communicated by Ichiro Shigekawa


Award Identifier / Grant number: 24540181

Award Identifier / Grant number: 26400144

Funding statement: This work is partially supported by the Grant-in-Aid for Scientific Research (C) No. 24540181 and No. 26400144 of Japan Society for the Promotion of Science (JSPS).

References

[1] van den Berg M., Bolthausen E. and den Hollander F., Moderate deviations for the volume of the Wiener sausage, Ann. of Math. (2) 153 (2001), 355–406. 10.2307/2661345Suche in Google Scholar

[2] Donsker M. D. and Varadhan S. R. S., Asymptotics for the Wiener sausage, Comm. Pure Appl. Math. 28 (1975), 525–565. 10.1002/cpa.3160280406Suche in Google Scholar

[3] Getoor R. K., Some asymptotic formulas involving capacity, Z. Wahrscheinlichkeitstheor. Verw. Gebiete 4 (1965), 248–252. 10.1007/BF00533755Suche in Google Scholar

[4] Hamana Y., Limit theorems for the Wiener sausage, Sugaku Expos. 18 (2005), 53–73. Suche in Google Scholar

[5] Hamana Y., On the expected volume of the Wiener sausage, J. Math. Soc. Japan 62 (2010), 1113–1136. 10.2969/jmsj/06241113Suche in Google Scholar

[6] Hamana Y., The expected volume and surface area of the Wiener sausage in odd dimensions, Osaka J. Math. 49 (2012), 853–868. Suche in Google Scholar

[7] Hamana Y., Asymptotic expansion of the expected volume of the Wiener sausage in even dimensions, Kyushu J. Math. 70 (2016), 167–196. 10.2206/kyushujm.70.167Suche in Google Scholar

[8] Hamana Y. and Kesten H., A large deviation result for the range of random walks and for the Wiener sausage, Probab. Theory Related Fields 120 (2001), 183–208. 10.1007/PL00008780Suche in Google Scholar

[9] Hamana Y. and Matsumoto H., The probability distributions of the first hitting times of Bessel processes, Trans. Amer. Math. Soc. 365 (2013), 5237–5257. 10.1090/S0002-9947-2013-05799-6Suche in Google Scholar

[10] Hamana Y. and Matsumoto H., Hitting times of Bessel processes, volume of Wiener sausages and zeros of Macdonald functions, J. Math. Soc. Japan, to appear. 10.2969/jmsj/06841615Suche in Google Scholar

[11] Hamana Y. and Matsumoto H., Hitting times to spheres of Brownian motions with and without drifts, Proc. Amer. Math. Soc., to appear. 10.1090/proc/13136Suche in Google Scholar

[12] Kac M. and Luttinger J. M., Bose–Einstein condensation in the presence of impurities II, J. Math. Phys. 15 (1974), 183–186. 10.1063/1.1666617Suche in Google Scholar

[13] Itô K. and McKean, Jr. H. P., Diffusion Processes and Their Sample Paths, Springer, Berlin, 1974. Suche in Google Scholar

[14] Lebedev N. N., Special Functions and Their Applications, Dover, New York, 1972. Suche in Google Scholar

[15] Le Gall J. -F., Sur le temps local d’intersection du mouvement Brownien plan et la méthode de renormalisation de Varadhan, Séminaire de Probabilitiés XIX, Lecture Notes in Math. 1123, Springer, Berlin (1985), 314–331. 10.1007/BFb0075863Suche in Google Scholar

[16] Le Gall J.-F., Fluctuation results for the Wiener sausage, Ann. Probab. 16 (1988), 991–1018. 10.1214/aop/1176991673Suche in Google Scholar

[17] Le Gall J.-F., Sur une conjecture de M. Kac, Probab. Theory Related Fields 78 (1988), 389–402. 10.1007/BF00334202Suche in Google Scholar

[18] Le Gall J.-F., Wiener sausage and self-intersection local times, J. Funct. Anal. 88 (1990), 299–341. 10.1016/0022-1236(90)90108-WSuche in Google Scholar

[19] Magnus W., Oberhettinger F. and Soni R. P., Formulas and Theorems for the Special Functions of Mathematical Physics, 3rd ed., Springer, Berlin, 1966. 10.1007/978-3-662-11761-3Suche in Google Scholar

[20] Port S. C., Asymptotic expansions for the expected volume of a stable sausage, Ann. Probab. 18 (1990), 492–523. 10.1214/aop/1176990842Suche in Google Scholar

[21] Spitzer F., Electrostatic capacity, heat flow and Brownian motion, Z. Wahrscheinlichkeitstheor. Verw. Gebiete 3 (1964), 110–121. 10.1007/978-1-4612-0459-6_4Suche in Google Scholar

[22] Spitzer F., Discussion of “Subadditive ergodic theory” by J. F. C. Kingman, Ann. Probab. 1 (1973), 904–905. 10.1214/aop/1176996798Suche in Google Scholar

[23] Watson G. N., A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, 1995. Suche in Google Scholar

Received: 2016-2-15
Published Online: 2016-6-14
Published in Print: 2017-3-1

© 2017 by De Gruyter

Heruntergeladen am 4.2.2026 von https://www.degruyterbrill.com/document/doi/10.1515/forum-2016-0039/pdf
Button zum nach oben scrollen