Abstract.
We prove, with a short argument based on projective algebraic geometry, that all linear symmetries of the cone of positive semidefinite quadratic forms come from linear transformations of the variables.
Received: 2011-10-5
Published Online: 2011-12-2
Published in Print: 2014-7-1
© 2014 by Walter de Gruyter Berlin/Boston
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Artikel in diesem Heft
- Frontmatter
- Loop homology of spheres and complex projective spaces
- Symmetries of the positive semidefinite cone
- On the distribution of cubic exponential sums
- The tempered spectrum of quasi-split classical groups III: The odd orthogonal groups
- Hyperbolic-sine analogues of Eisenstein series, generalized Hurwitz numbers, and q-zeta functions
- Multiplicative properties of Quinn spectra
- On the crossing number of semiadequate links
- “Spectral implies Tiling” for three intervals revisited
- Mock modular grids and Hecke relations for mock modular forms
Artikel in diesem Heft
- Frontmatter
- Loop homology of spheres and complex projective spaces
- Symmetries of the positive semidefinite cone
- On the distribution of cubic exponential sums
- The tempered spectrum of quasi-split classical groups III: The odd orthogonal groups
- Hyperbolic-sine analogues of Eisenstein series, generalized Hurwitz numbers, and q-zeta functions
- Multiplicative properties of Quinn spectra
- On the crossing number of semiadequate links
- “Spectral implies Tiling” for three intervals revisited
- Mock modular grids and Hecke relations for mock modular forms