Artikel
Lizenziert
Nicht lizenziert
Erfordert eine Authentifizierung
Homogeneous spaces in coincidence theory II
-
Daciberg L. Gonçalves
und Peter N.-S. Wong
Veröffentlicht/Copyright:
27. Juli 2005
Abstract
For maps f, g : X → Y between closed orientable n-manifolds, we investigate conditions for which N(f, g) = R(f, g) where N(f, g) and R(f, g) denote the Nielsen and Reidemeister coincidence numbers respectively. In particular, we give necessary and suffcient conditions for the equality to hold when Y is a solvmanifold or when both X and Y are infrasolvmanifolds.
:
Published Online: 2005-07-27
Published in Print: 2005-03-11
© de Gruyter
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Artikel in diesem Heft
- Defect relation for rational functions as targets
- On the structure of distributive and Bezout rings with waists
- The dimension of spheres with smooth one fixed point actions
- Space curves and trisecant lines
- Convergence of Dirichlet forms with changing speed measures on ℝd
- Complex product structures on Lie algebras
- Homogeneous spaces in coincidence theory II
- Holomorphic convexity of complex spaces with 1-convex hypersections
- The Nielsen numbers of Anosov diffeomorphisms on flat Riemannian manifolds
Artikel in diesem Heft
- Defect relation for rational functions as targets
- On the structure of distributive and Bezout rings with waists
- The dimension of spheres with smooth one fixed point actions
- Space curves and trisecant lines
- Convergence of Dirichlet forms with changing speed measures on ℝd
- Complex product structures on Lie algebras
- Homogeneous spaces in coincidence theory II
- Holomorphic convexity of complex spaces with 1-convex hypersections
- The Nielsen numbers of Anosov diffeomorphisms on flat Riemannian manifolds