Startseite Maximum principles and applications for fractional differential equations with operators involving Mittag-Leffler function
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Maximum principles and applications for fractional differential equations with operators involving Mittag-Leffler function

  • Mohammed Al-Refai
Veröffentlicht/Copyright: 23. August 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, we formulate and prove two maximum principles to nonlinear fractional differential equations. We consider a fractional derivative operator with Mittag-Leffler function of two parameters in the kernel. These maximum principles are used to establish a pre-norm estimate of solutions, and to derive certain uniqueness and positivity results to related linear and nonlinear fractional initial value problems.

References

[1] M. Al-Refai, Y. Luchko, Maximum principle for the fractional diffusion equations with the Riemann-Liouville fractional derivative and its applications. Fract. Calc. Appl. Anal. 17, No 2 (2014), 483–498; DOI: 10.2478/s13540-014-0181-5; https://www.degruyter.com/journal/key/FCA/17/2/html10.2478/s13540-014-0181-5;Suche in Google Scholar

[2] M. Al-Refai, Yu. Luchko, Maximum principle for the multi-term time-fractional diffusion equations with the Riemann-Liouville fractional derivatives. J. Appl. Math. and Computation 257 (2015), 40–51.10.1016/j.amc.2014.12.127Suche in Google Scholar

[3] M. Al-Refai, Yu. Luchko, Analysis of fractional diffusion equations of distributed order: Maximum principles and their applications. Analysis 36, No 2 (2015); DOI: 10.1515/anly-2015-5011.10.1515/anly-2015-5011Suche in Google Scholar

[4] M. Al-Refai, Maximum principles for nonlinear fractional differential equations in reliable space. Progress in Fract. Differentiation and Appl. 6, No 2 (2020), 95–99.10.18576/pfda/060202Suche in Google Scholar

[5] R. Gorenflo, A. Kilbas, F. Mainardi, S. Rogosin, Mittag-Leffler Functions, Related Topics and Applications: Theory and Applications. Springer-Verlag, Berlin-Heidelberg, 2014; 2nd Ed. 2020.10.1007/978-3-662-43930-2Suche in Google Scholar

[6] A. Hanyga, A comment on a controversial issue: A generalized fractional derivative cannot have a regular kernel. Fract. Calc. Appl. Anal. 23, No 1 (2020), 211–223; DOI: 10.1515/fca-2020-0008; https://www.degruyter.com/journal/key/FCA/23/1/html10.1515/fca-2020-0008;Suche in Google Scholar

[7] A. Kilbas, M. Saigo, R. Saxena, Generalized Mittag-Leffler function and generalized fractional calculus operators. Integr. Transf. Spec. Funct., 15, No 1 (2004), 31–49.10.1080/10652460310001600717Suche in Google Scholar

[8] A. Kilbas, H. Srivastava, T. Trujillo, Theory and Applications of Fractional Differential Equations. Elsevier Science, Amsterdam, 2006.Suche in Google Scholar

[9] V. Lakshmikantham, A.S. Vatsala, Basic theory of fractional differential equations. Nonlinear Anal. 69 (2008), 2677–2682.10.1016/j.na.2007.08.042Suche in Google Scholar

[10] Yu. Luchko, Maximum principle for the generalized time-fractional diffusion equation. J. Math. Anal. Appl. 351 (2009), 218–223.10.1016/j.jmaa.2008.10.018Suche in Google Scholar

[11] Yu. Luchko, General fractional integrals and derivatives with the So-nine kernels. Mathematics 594, No 9 (2021), 1–17.Suche in Google Scholar

[12] K.S. Miller, S. Samko, A note on the complete monotonocity of the generalized Mittag-Leffler function. Real Anal. Exchange 23, No 2 (1998), 753–755.10.2307/44153996Suche in Google Scholar

[13] J. Nieto, Maximum principles for fractional differential equations derived from Mittag-Leffler functions. Appl. Math. Letters 23 (2010), 1248–1251.10.1016/j.aml.2010.06.007Suche in Google Scholar

[14] H. Pollard, The complete monotonic character of the Mittag-Leffler function Eα−x Bull. Amer. Math. Soc. 54 (1948), 1115–1116.10.1090/S0002-9904-1948-09132-7Suche in Google Scholar

[15] T. Prabhakar, A singular integral equation with a generalized Mittag-Leffler function in the kernel. Yokohama Math. J. 19 (1971), 7–15.Suche in Google Scholar

[16] W.R. Schneider, Completely monotone generalized Mittag-Leffler functions. Expo. Math. 14 (1996), 3–16.Suche in Google Scholar

[17] H. Ye, F. Liu, V. Anh, I. Turner, Maximum principle and numerical method for the multi-term time-space Riesz-Caputo fractional differential equations. Appl. Math. and Computation 227 (2014), 531–540.10.1016/j.amc.2013.11.015Suche in Google Scholar

[18] L. Zhenhai, Z. Shengda, B. Yunru, Maximum principles for multi-term space-time variable-order fractional diffusion equations and their applications. Fract. Calc. Appl. Anal. 19, No 1 (2016), 188–211; DOI: 10.1515/fca-2016-0011; https://www.degruyter.com/journal/key/FCA/19/1/html10.1515/fca-2016-0011;Suche in Google Scholar

Received: 2020-09-27
Revised: 2021-07-13
Published Online: 2021-08-23
Published in Print: 2021-08-26

© 2021 Diogenes Co., Sofia

Artikel in diesem Heft

  1. Frontmatter
  2. Editorial
  3. FCAA related news, events and books (FCAA–volume 24–4–2021)
  4. Research Paper
  5. Three representations of the fractional p-Laplacian: Semigroup, extension and Balakrishnan formulas
  6. Tutorial paper
  7. The bouncing ball and the Grünwald-Letnikov definition of fractional derivative
  8. Research Paper
  9. Fractional diffusion-wave equations: Hidden regularity for weak solutions
  10. Censored stable subordinators and fractional derivatives
  11. Variational methods to the p-Laplacian type nonlinear fractional order impulsive differential equations with Sturm-Liouville boundary-value problem
  12. Multivariable fractional-order PID tuning by iterative non-smooth static-dynamic H synthesis
  13. Filter regularization method for a nonlinear Riesz-Feller space-fractional backward diffusion problem with temporally dependent thermal conductivity
  14. The rate of convergence on fractional power dissipative operator on compact manifolds
  15. Fractional Langevin type equations for white noise distributions
  16. Local existence and non-existence for a fractional reaction–diffusion equation in Lebesgue spaces
  17. Maximum principles and applications for fractional differential equations with operators involving Mittag-Leffler function
  18. The Crank-Nicolson type compact difference schemes for a loaded time-fractional Hallaire equation
  19. Robust fractional-order perfect control for non-full rank plants described in the Grünwald-Letnikov IMC framework
  20. Properties of the set of admissible “state control” pair for a class of fractional semilinear evolution control systems
Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/fca-2021-0052/html
Button zum nach oben scrollen