Startseite The rate of convergence on fractional power dissipative operator on compact manifolds
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The rate of convergence on fractional power dissipative operator on compact manifolds

  • Yali Pan , Dashan Fan und Junyan Zhao EMAIL logo
Veröffentlicht/Copyright: 23. August 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

On a compact connected manifold M , we concern the fractional power dissipative operator etLα , and obtain the almost-everywhere convergence rate (as t → 0+) of etLαf when f is in some Sobolev type Hardy spaces. The main result is a non-trivial extension of a recent result on ℝn by Cao and Wang in 2.

Acknowledgements

Y. Pan was supported partially by the Natural Science Foundation from the Education Department of Anhui Province (No. KJ2017A847). D. Fan was supported partially by National Natural Science Foundation of China (Grant No. 11471288, 11971295) and Natural Science Foundation of Shanghai (No. 19ZR1417600). J. Zhao was supported by the Natural Science Foundation of Zhejiang (No. LQ20A010003).

References

[1] A. P. Calderón, A. Torchinsky, Parabolic maximal functions associated with a distribution. II. Adv. Math. 24, No 2 (1977), 101–171.10.1016/S0001-8708(77)80016-9Suche in Google Scholar

[2] Z. Cao, M. Wang, The rate of convergence on fractional power dissipative operator on some Sobolev type spaces. To appear in: Appl. Math. J. Chinese Univ. Ser. B.Suche in Google Scholar

[3] J. Chen, Q. Deng, Y. Ding, D. Fan, Estimates on fractional power dissipative equations in function spaces. Nonlinear Anal. 75, No 5 (2012), 2959–2974.10.1016/j.na.2011.11.039Suche in Google Scholar

[4] J. Chen, D. Fan, F. Zhao, On the rate of almost everywhere convergence of combinations and multivariate averages. Potential Anal. 51, No 3 (2019), 397–423.10.1007/s11118-018-9716-4Suche in Google Scholar

[5] X. Chen, D. Fan, Convergence of a wave operator on compact manifolds. To appear.Suche in Google Scholar

[6] L. Colzani, Riesz means of eigenfunction expansions of elliptic differential operators on compact manifolds. Rend. Sem. Mat. Fis. Milano 58 (1988), 149–167.10.1007/BF02925238Suche in Google Scholar

[7] L. Colzani, G. Travaglini, Hardy-Lorentz spaces and expansions in eigenfunctions of the Laplace-Beltrami operator on compact manifolds. Colloq. Math. 58, No 2 (1990), 305–315.10.4064/cm-58-2-305-315Suche in Google Scholar

[8] D. Fan, Z. Wu, Transference of maximal multipliers on Hardy spaces. Proc. Amer. Math. Soc. 123, No 10 (1995), 3169–3174.10.1090/S0002-9939-1995-1273491-2Suche in Google Scholar

[9] L. Hörmander, The Analysis of Linear Partial Differential Operators. I. Springer-Verlag, Berlin (1983).Suche in Google Scholar

[10] M. Marias, Lp-boundedness of oscillating spectral multipliers on Riemannian manifolds. Ann. Math. Blaise Pascal 10, No 1 (2003), 133–160.10.5802/ambp.171Suche in Google Scholar

[11] C. Miao, B. Yuan, B. Zhang, Well-posedness of the Cauchy problem for the fractional power dissipative equations. Nonlinear Anal. 68, No 3 (2008), 461–484.10.1016/j.na.2006.11.011Suche in Google Scholar

[12] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, Princeton, NJ (1993).Suche in Google Scholar

[13] E. Terraneo, Non-uniqueness for a critical non-linear heat equation. Comm. Partial Differential Equations 27, No 1-2 (2002), 185–218.10.1081/PDE-120002786Suche in Google Scholar

Received: 2020-03-24
Revised: 2021-07-11
Published Online: 2021-08-23
Published in Print: 2021-08-26

© 2021 Diogenes Co., Sofia

Artikel in diesem Heft

  1. Frontmatter
  2. Editorial
  3. FCAA related news, events and books (FCAA–volume 24–4–2021)
  4. Research Paper
  5. Three representations of the fractional p-Laplacian: Semigroup, extension and Balakrishnan formulas
  6. Tutorial paper
  7. The bouncing ball and the Grünwald-Letnikov definition of fractional derivative
  8. Research Paper
  9. Fractional diffusion-wave equations: Hidden regularity for weak solutions
  10. Censored stable subordinators and fractional derivatives
  11. Variational methods to the p-Laplacian type nonlinear fractional order impulsive differential equations with Sturm-Liouville boundary-value problem
  12. Multivariable fractional-order PID tuning by iterative non-smooth static-dynamic H synthesis
  13. Filter regularization method for a nonlinear Riesz-Feller space-fractional backward diffusion problem with temporally dependent thermal conductivity
  14. The rate of convergence on fractional power dissipative operator on compact manifolds
  15. Fractional Langevin type equations for white noise distributions
  16. Local existence and non-existence for a fractional reaction–diffusion equation in Lebesgue spaces
  17. Maximum principles and applications for fractional differential equations with operators involving Mittag-Leffler function
  18. The Crank-Nicolson type compact difference schemes for a loaded time-fractional Hallaire equation
  19. Robust fractional-order perfect control for non-full rank plants described in the Grünwald-Letnikov IMC framework
  20. Properties of the set of admissible “state control” pair for a class of fractional semilinear evolution control systems
Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/fca-2021-0049/html
Button zum nach oben scrollen