Filter regularization method for a nonlinear Riesz-Feller space-fractional backward diffusion problem with temporally dependent thermal conductivity
-
Dinh Nguyen Duy Hai
Abstract
This paper concerns a backward problem for a nonlinear space-fractional diffusion equation with temporally dependent thermal conductivity. Such a problem is obtained from the classical diffusion equation by replacing the second-order space derivative with a Riesz-Feller derivative of order α ∈ (0, 2), which is usually used to model the anomalous diffusion. We show that the problem is severely ill-posed. Using the Fourier transform and a filter function, we construct a regularized solution from the data given inexactly and explicitly derive the convergence estimate in the case of the local Lipschitz reaction term. Special cases of the regularized solution are also presented. These results extend some earlier works on the space-fractional backward diffusion problem.
Acknowledgements
I would like to thank Prof. Dang Duc Trong for fruitful discussions on backward problems. Also, I wish to thank the Editor and the Reviewers for their most helpful comments on this paper. This work is supported by Vietnam National University-Ho Chi Minh City (VNU-HCM) under Grant number B2021-18-02.
References
[1] H. Cheng, C.L. Fu, G.H. Zheng, J. Gao, A regularization for a Riesz-Feller space-fractional backward diffusion problem. Inverse Probl. Sci. Eng. 22, No 6 (2014), 860–872; DOI: 10.1080/17415977.2013.840298.10.1080/17415977.2013.840298Suche in Google Scholar
[2] H.F. Ding, Y.X. Zhang, New numerical methods for the Riesz space fractional partial differential equations. Comput. Math. Appl. 63, No 7 (2012), 1135–1146; DOI: 10.1016/j.camwa.2011.12.028.10.1016/j.camwa.2011.12.028Suche in Google Scholar
[3] H. Ding, C. Li, High-order algorithms for Riesz derivative and their applications. Fract. Calc. Appl. Anal. 19, No 1 (2016), 19–55; DOI: 10.1515/fca-2016-0003; https://www.degruyter.com/journal/key/FCA/19/1/html.10.1515/fca-2016-0003;Suche in Google Scholar
[4] H.W. Engl, M. Hanke, A. Neubauer, Regularization of Inverse Problems. Kluwer, Dordrecht (1996).10.1007/978-94-009-1740-8Suche in Google Scholar
[5] W. Feller, On a generalization of Marcel Riesz’ potentials and the semigroups generated by them. In: Meddelanden Lunds Universitets Matematiska Seminarium, Tome suppl. dédié a M. Riesz, Lund (1952), 73–81.Suche in Google Scholar
[6] W. Feller, An Introduction to Probability Theory and its Applications. Vol. 2, 2nd Ed., Wiley, New York (1971).Suche in Google Scholar
[7] R. Gorenflo, F. Mainardi, Some recent advances in theory and simulation of fractional diffusion processes. J. Comput. Appl. Math. 229, No 2 (2009), 400–415; DOI: 10.1016/j.cam.2008.04.005.10.1016/j.cam.2008.04.005Suche in Google Scholar
[8] R. Gorenflo, F. Mainardi, D. Moretti, G. Pagnini, P. Paradisi, Fractional diffusion: probability distributions and random walk models. Phys. A: Stat. Mech. and its Appl. 305, No 1-2 (2002), 106–112; DOI: 10.1016/S0378-4371(01)00647-1.10.1016/S0378-4371(01)00647-1Suche in Google Scholar
[9] J. Hadamard, Lectures on Cauchy problem in Linear Partial Differential Equations. Yale University Press, New Haven (1923).Suche in Google Scholar
[10] D.N.D. Hai, D.D. Trong, Optimal error bound and truncation regularization method for a backward time-fractional diffusion problem in Hilbert scales. Appl. Math. Lett. 107 (2020), # 106448; DOI: 10.1016/j.aml.2020.106448.10.1016/j.aml.2020.106448Suche in Google Scholar
[11] D.N.D. Hai, N.H. Tuan, L.D. Long, L.G.Q. Thong, Inverse problem for nonlinear backward space-fractional diffusion equation. J. Inverse Ill-posed Probl. 25, No 4 (2017), 423–444; DOI: 10.1515/jiip-2015-0065.10.1515/jiip-2015-0065Suche in Google Scholar
[12] J. Kokila, M.T. Nair, Fourier truncation method for the non-homogeneous time-fractional backward heat conduction problem. Inverse Probl. Sci. Eng. 28, No 3 (2020), 402–426; DOI: 10.1080/17415977.2019.1580707.10.1080/17415977.2019.1580707Suche in Google Scholar
[13] F. Liu, P. Zhuang, V. Anh, I. Turner, K. Burrage, Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation. Appl. Math. Comput. 191, No 1 (2007), 12–20; DOI: 10.1016/j.amc.2006.08.162.10.1016/j.amc.2006.08.162Suche in Google Scholar
[14] F. Mainardi, Y. Luchko, G. Pagnini, The fundamental solution of the space-time fractional diffusion equation. Fract. Calc. Appl. Anal. 4, No 2 (2001), 153–192.Suche in Google Scholar
[15] S. Momani, Z. Odibat, V.S. Erturk, Generalized differential transform method for solving a space- and time-fractional diffusion-wave equation. Phys. Letters A, 370, No 5-6 (2007), 379–387; DOI: 10.1016/j.physleta.2007.05.083.10.1016/j.physleta.2007.05.083Suche in Google Scholar
[16] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, New York (1983).10.1007/978-1-4612-5561-1Suche in Google Scholar
[17] S.S. Ray, A new approach for the application of Adomian decomposition method for the solution of fractional space diffusion equation with insulated ends. Appl. Math. Comput. 202, No 2 (2008), 544–549; DOI: 10.1016/j.amc.2008.02.043.10.1016/j.amc.2008.02.043Suche in Google Scholar
[18] S.S. Ray, K.S. Chaudhuri, R.K. Bera, Application of modified decomposition method for the analytical solution of space fractional diffusion equation. Appl. Math. Comput. 196, No 1 (2008), 294–302; DOI: 10.1016/j.amc.2007.05.048.10.1016/j.amc.2007.05.048Suche in Google Scholar
[19] C. Shi, C. Wang, G.H. Zheng, T. Wei, A new a posteriori parameter choice strategy for the convolution regularization of the space-fractional backward diffusion problem. J. Comput. Appl. Math. 279 (2015), 233–248; DOI: 10.1016/j.cam.2014.11.013.10.1016/j.cam.2014.11.013Suche in Google Scholar
[20] D.D. Trong, B.T. Duy, M.N. Minh, Backward heat equations with locally lipschitz source. Appl. Anal. 94, No 10 (2015), 2023–2036; DOI: 10.1080/00036811.2014.963063.10.1080/00036811.2014.963063Suche in Google Scholar
[21] D.D. Trong, D.N.D. Hai, N.D. Minh, Optimal regularization for an unknown source of space-fractional diffusion equation. Appl. Math. Comput. 349 (2019), 184–206; DOI: 10.1016/j.amc.2018.12.030.10.1016/j.amc.2018.12.030Suche in Google Scholar
[22] N.H. Tuan, D.N.D. Hai, L.D. Long, V.T. Nguyen, M. Kirane, On a Riesz - Feller space fractional backward diffusion problem with a nonlinear source. J. Comput. Appl. Math. 312 (2017), 103–126; DOI: 10.1016/j.cam.2016.01.003.10.1016/j.cam.2016.01.003Suche in Google Scholar
[23] F. Yang, X.X. Li, D.G. Li, L. Wang, The simplified Tikhonov regularization method for solving a Riesz–Feller space-Fractional backward diffusion problem. Math. Comput. Sci. 11, No 1 (2017), 91–110; DOI: 10.1007/s11786-017-0292-6.10.1007/s11786-017-0292-6Suche in Google Scholar
[24] F. Yang, C.L. Fu, X.X. Li, The inverse source problem for time-fractional diffusion equation: stability analysis and regularization. Inverse Probl. Sci. Eng. 23, No 6 (2015), 969–996; DOI: 10.1080/17415977.2014.968148.10.1080/17415977.2014.968148Suche in Google Scholar
[25] Q. Yang, F. Liu, I. Turner, Numerical methods for fractional partial differential equations with Riesz space fractional derivatives. Appl. Math. Model. 34, No 1 (2010), 200–218; DOI: 10.1016/j.apm.2009.04.006.10.1016/j.apm.2009.04.006Suche in Google Scholar
[26] J. Zhao, S. Liu, T. Liu, An inverse problem for space-fractional backward diffusion problem. Math. Meth. Appl. Sci. 37, No 8 (2014), 1147–1158; DOI: 10.1002/mma.2876.10.1002/mma.2876Suche in Google Scholar
[27] G.H. Zheng, Solving the backward problem in Riesz-Feller fractional diffusion by a new nonlocal regularization method. Appl. Numer. Math. 135 (2019), 99–128; DOI: 10.1016/j.apnum.2018.08.008.10.1016/j.apnum.2018.08.008Suche in Google Scholar
[28] G.H. Zheng, T. Wei, Two regularization methods for solving a Riesz-Feller space-fractional backward diffusion problem. Inverse Probl. 26 (2010), # 115017; DOI: 10.1088/0266-5611/26/11/115017.10.1088/0266-5611/26/11/115017Suche in Google Scholar
© 2021 Diogenes Co., Sofia
Artikel in diesem Heft
- Frontmatter
- Editorial
- FCAA related news, events and books (FCAA–volume 24–4–2021)
- Research Paper
- Three representations of the fractional p-Laplacian: Semigroup, extension and Balakrishnan formulas
- Tutorial paper
- The bouncing ball and the Grünwald-Letnikov definition of fractional derivative
- Research Paper
- Fractional diffusion-wave equations: Hidden regularity for weak solutions
- Censored stable subordinators and fractional derivatives
- Variational methods to the p-Laplacian type nonlinear fractional order impulsive differential equations with Sturm-Liouville boundary-value problem
- Multivariable fractional-order PID tuning by iterative non-smooth static-dynamic H∞ synthesis
- Filter regularization method for a nonlinear Riesz-Feller space-fractional backward diffusion problem with temporally dependent thermal conductivity
- The rate of convergence on fractional power dissipative operator on compact manifolds
- Fractional Langevin type equations for white noise distributions
- Local existence and non-existence for a fractional reaction–diffusion equation in Lebesgue spaces
- Maximum principles and applications for fractional differential equations with operators involving Mittag-Leffler function
- The Crank-Nicolson type compact difference schemes for a loaded time-fractional Hallaire equation
- Robust fractional-order perfect control for non-full rank plants described in the Grünwald-Letnikov IMC framework
- Properties of the set of admissible “state control” pair for a class of fractional semilinear evolution control systems
Artikel in diesem Heft
- Frontmatter
- Editorial
- FCAA related news, events and books (FCAA–volume 24–4–2021)
- Research Paper
- Three representations of the fractional p-Laplacian: Semigroup, extension and Balakrishnan formulas
- Tutorial paper
- The bouncing ball and the Grünwald-Letnikov definition of fractional derivative
- Research Paper
- Fractional diffusion-wave equations: Hidden regularity for weak solutions
- Censored stable subordinators and fractional derivatives
- Variational methods to the p-Laplacian type nonlinear fractional order impulsive differential equations with Sturm-Liouville boundary-value problem
- Multivariable fractional-order PID tuning by iterative non-smooth static-dynamic H∞ synthesis
- Filter regularization method for a nonlinear Riesz-Feller space-fractional backward diffusion problem with temporally dependent thermal conductivity
- The rate of convergence on fractional power dissipative operator on compact manifolds
- Fractional Langevin type equations for white noise distributions
- Local existence and non-existence for a fractional reaction–diffusion equation in Lebesgue spaces
- Maximum principles and applications for fractional differential equations with operators involving Mittag-Leffler function
- The Crank-Nicolson type compact difference schemes for a loaded time-fractional Hallaire equation
- Robust fractional-order perfect control for non-full rank plants described in the Grünwald-Letnikov IMC framework
- Properties of the set of admissible “state control” pair for a class of fractional semilinear evolution control systems