Startseite Müntz sturm-liouville problems: Theory and numerical experiments
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Müntz sturm-liouville problems: Theory and numerical experiments

  • Hassan Khosravian-Arab und Mohammad Reza Eslahchi EMAIL logo
Veröffentlicht/Copyright: 23. Juni 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This paper presents two new classes of Müntz functions which are called Jacobi-Müntz functions of the first and second types. These newly generated functions satisfy in two self-adjoint fractional Sturm-Liouville problems and thus they have some spectral properties such as: orthogonality, completeness, three-term recurrence relations and so on. With respect to these functions two new orthogonal projections and their error bounds are derived. Also, two new Müntz type quadrature rules are introduced. As two applications of these basis functions some fractional ordinary and partial differential equations are considered and numerical results are given.

Acknowledgements

The authors would like to express their special thanks to Prof. Virginia Kiryakova: Editor-in-Chief, for helps, supports, and her valuable comments which greatly improved the quality of this manuscript. The authors also wish to thank the anonymous reviewers for their helpful comments and suggestions.

Finally, the authors would like to acknowledge the financial support of the Iran National Science Foundation (INSF) (Grant No. 96014450).

References

[1] M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables. Dover Publications, Inc., New York, 1992; 10.5555/1098650.Suche in Google Scholar

[2] J. M. Almira, Müntz type theorems I. Surv. Approx. Theory 3 (2007), 152–194; http://cds.cern.ch/record/1063818.Suche in Google Scholar

[3] G. E. Andrews, R. Askey, R. Roy, Special Functions. Vol. 71 of Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 1999; 10.1017/CBO9781107325937.Suche in Google Scholar

[4] T. M. Atanackovic, B. Stankovic, On a class of differential equations with left and right fractional derivatives. J. Appl. Math. Mech. 87 (2007), 537–546; 10.1017/CBO978110732593710.1002/zamm.200710335.Suche in Google Scholar

[5] T. M. Atanackovic, B. Stankovic, On a differential equation with left and right fractional derivatives. Fract. Calc. Appl. Anal. 10, No 2 (2007), 139–150; http://hdl.handle.net/10525/1312.10.1002/zamm.200710335Suche in Google Scholar

[6] P. J. Boyd, Chebyshev and Fourier Spectral Methods. Springer-Verlag Berlin Heidelberg, 1989.10.1007/978-3-642-83876-7Suche in Google Scholar

[7] A. Bhrawy, M. Zaky, A fractional-order Jacobi tau method for a class of time-fractional PDEs with variable coefficients. Math. Methods Appl. Sci. 39 (2016), 1765–1779; 10.1002/mma.3600.Suche in Google Scholar

[8] S. Chen, J. Shen, L.-L. Wang, Generalized Jacobi functions and their applications to fractional differential equations. Math. Comput. 85 (2016), 1603–1638; 10.1090/mcom3035.Suche in Google Scholar

[9] S. Esmaeili, M. Shamsi, A pseudo-spectral scheme for the approximate solution of a family of fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 16 (2011), 3646–3654; 10.1090/mcom303510.1016/j.cnsns.2010.12.008.Suche in Google Scholar

[10] S. Esmaeili, M. Shamsi, Y. Luchko, Numerical solution of fractional differential equations with a collocation method based on Müntz polynomials. Comput. Math. with Appl. 62 (2011), 918–929; 10.1016/j.camwa.2011.04.023.Suche in Google Scholar

[11] N. J. Ford, M. L. Morgado, M. Rebelo, A nonpolynomial collocation method for fractional terminal value problems. J. Comput. Appl. Math. 275 (2015), 392–402; 10.1016/j.cam.2014.06.013.Suche in Google Scholar

[12] N. J. Ford, M. L. S. Morgado, M. Rebelo, Nonpolynomial collocation approximation of solutions to fractional differential equations. Fract. Calc. Appl. Anal. 16, No 4 (2013), 874–891; 10.2478/s13540-013-0054-3;Suche in Google Scholar

[13] D. Hou, L. Yumin, M. Azaiez, C. Xu, A Müntz-collocation spectral method for weakly singular Volterra integral equations. J. Sci. Comput. 81 (2019), 2162–2187; 10.1007/s10915-019-01078-y.Suche in Google Scholar

[14] D. Hou, L. Yumin, M. Azaiez, C. Xu, Müntz spectral method for two-dimensional space-fractional convection-diffusion equation. Commun. Comput. Phys. 26 (2019), 1415–1443; 10.4208/cicp.2019.js60.04.Suche in Google Scholar

[15] S. Kazem, S. Abbasbandy, S. Kumar, Fractional-order Legendre functions for solving fractional-order differential equations. Appl. Math. Model. 37 (2013), 5498–5510; 10.1016/j.apm.2012.10.026.Suche in Google Scholar

[16] E. Kharazmi, M. Zayernouri, G. E. Karniadakis, Petrov-Galerkin and spectral collocation methods for distributed order differential equations. SIAM J. Sci. Comput. 39 (2017), A1003–A1037; 10.1137/16M1073121.Suche in Google Scholar

[17] V. Kiryakova, Generalized Fractional Calculus and Applications. Longman & J. Wiley, Harlow & N. York (1994).Suche in Google Scholar

[18] V.N. Kolokoltsov, The probabilistic point of view on the generalized fractional partial differential equations. Fract. Calc. Appl. Anal. 22, No 3 (2019), 543–600; 10.1515/fca-2019-0033; https://www.degruyter.com/journal/key/FCA/22/3/html.Suche in Google Scholar

[19] H. Khosravian-Arab, M. Dehghan, M.R. Eslahchi, Fractional Sturm-Liouville boundary value problems in unbounded domains: Theory and applications. J. Comput. Phys. 299 (2015), 526–560; 10.1016/j.jcp.2015.06.030.Suche in Google Scholar

[20] H. Khosravian-Arab, M. R. Eslahchi, Müntz pseudo–spectral method: Theory and numerical experiments. Commun. Nonlinear Sci. Numer. Simul. 93 (2021), Art. # 105510; 10.1016/j.cnsns.2020.105510.Suche in Google Scholar

[21] A. Kochubei, Y. Luchko (Eds.) Handbook of Fractional Calculus with Applications. Vol. 1: Basic Theory. De Gruyter, Berlin, 2019; 10.1515/9783110571622.Suche in Google Scholar

[22] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations. Vol. 204 of North-Holland Mathematics Studies, Elsevier Science B. V., Amsterdam, 2006.Suche in Google Scholar

[23] M. Klimek, O. Agrawal, Fractional Sturm-Liouville problem. Comput. Math. with Appl. 66 (2013), 795–812; 10.1016/j.camwa.2012.12.011.Suche in Google Scholar

[24] A. Lischke, M. Zayernouri, G. E. Karniadakis, A Petrov-Galerkin spectral method of linear complexity for fractional multiterm ODEs on the half line. SIAM J. Sci. Comput. 39 (2017), A922–A946; 10.1137/17M1113060.Suche in Google Scholar

[25] Yu. Luchko, J.J. Trujillo, Caputo type modification of the Erdélyi–Kober fractional derivative. Fract. Calc. Appl. Anal. 10, No 3 (2007), 249–267; http://sci-gems.math.bas.bg/jspui/handle/10525/1318.Suche in Google Scholar

[26] Z. Mao, G. E. Karniadakis, A spectral method (of exponential convergence) for singular solutions of the diffusion equation with general two-sided fractional derivative. SIAM J. Numer. Anal. 56 (2018), 24–49; 10.1137/16M1103622.Suche in Google Scholar

[27] A.M. Mathai, H.J. Haubold, Erdélyi-Kober Fractional Calculus: From a Statistical Perspective, Inspired by Solar Neutrino Physics. Springer Briefs in Mathematical Physics, Singapore, 2018; 10.1007/978-981-13-1159-8.Suche in Google Scholar

[28] Z. M. Odibat, N. T. Shawagfeh, Generalized Taylor’s formula. Appl. Math. Comput. 186 (2007), 286–293; 10.1016/j.amc.2006.07.102. https://doi.org/10.1016/j.amc.2006.07.102.Suche in Google Scholar

[29] J. Shen, T. Tang, L.-L. Wang, Spectral Methods: Algorithms, Analysis and Applications. Vol. 41 of Springer Ser. in Computational Mathematics, Springer, Heidelberg, 2011; 10.1007/978-3-540-71041-7.Suche in Google Scholar

[30] I.N. Sneddon, The use in mathematical analysis of Erdélyi–Kober operators and some of their applications. In: Fractional Calculus and Its Applications (Proc. Internat. Conf. Held in New Haven), Lect. Notes Math. 457, 37–79, Springer, N. York, 1975; 10.1007/BFb0067097.Suche in Google Scholar

[31] J. Shen, Y. Wang, Müntz-Galerkin methods and applications to mixed Dirichlet-Neumann boundary value problems. SIAM J. Sci. Comput. 38 (2016), A2357–A2381; 10.1137/15M1052391.Suche in Google Scholar

[32] M. Zayernouri, M. Ainsworth, G. E. Karniadakis, Tempered fractional Sturm-Liouville eigenproblems. SIAM J. Sci. Comput. 37 (2015), A1777–A1800; 10.1137/15M105239110.1137/140985536.Suche in Google Scholar

[33] M. Zayernouri, G. Karniadakis, Fractional Sturm-Liouville eigen-problems: Theory and numerical approximation. J. Comput. Phys. 252 (2013), 495–517; 10.1016/j.jcp.2013.06.031.Suche in Google Scholar

[34] M. Zayernouri, G. Karniadakis, Fractional spectral collocation method. SIAM J. Sci. Comput. 36 (2014), A40–A62; 10.1137/130933216.Suche in Google Scholar

[35] M. Zayernouri, G. Karniadakis, Fractional spectral collocation methods for linear and nonlinear variable order fpdes. J. Comput. Phys. 293 (2014), 312–338; 10.1016/j.jcp.2014.12.001.Suche in Google Scholar

Received: 2019-12-31
Revised: 2021-05-08
Published Online: 2021-06-23
Published in Print: 2021-06-25

© 2021 Diogenes Co., Sofia

Heruntergeladen am 1.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/fca-2021-0034/html
Button zum nach oben scrollen