Startseite PID Controller Fuzzy Reliability for Hydropower System under Intuitionistic Fuzzy Environment
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

PID Controller Fuzzy Reliability for Hydropower System under Intuitionistic Fuzzy Environment

  • Vidhi Tiwari ORCID logo , Akshay Kumar ORCID logo und Mangey Ram ORCID logo EMAIL logo
Veröffentlicht/Copyright: 19. November 2025
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This work considers the intuitionistic fuzzy approach, using the Rayleigh distribution to define failure parameters and trapezoidal intuitionistic fuzzy numbers (TrIFNs) to characterize fuzzy variables. We calculate the reliability function using the universal (probability) generating function. We further apply the method to a hydropower system subjected to a PID (proportional-integral-derivative) controller by evaluating intuitionistic fuzzy reliability and the sensitivity of fuzzy reliability. We also use the average operator of TrIFNs with equal weights to analyze intuitionistic fuzzy reliability and sensitivity more effectively. We present the results in graphical and tabular form for greater clarity.

MSC 2020: 90B25; 68M15

Acknowledgements

We would like to thank Graphic Era Deemed to be University, Dehradun, India for their valuable contribution and support in the completion of this research.

References

[1] D. O. Aikhuele, Intuitionistic fuzzy model for reliability management in wind turbine system, Appl. Comput. Inform. 16 (2020), no. 1–2, 181–194. 10.1016/j.aci.2018.05.003Suche in Google Scholar

[2] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986), no. 1, 87–96. 10.1016/S0165-0114(86)80034-3Suche in Google Scholar

[3] K. T. Atanassov, Interval valued intuitionistic fuzzy sets Intuitionistic Fuzzy Sets, Stud. Fuzziness Soft Comput. 35, Physica, Heidelberg (1999), 139–177. 10.1007/978-3-7908-1870-3_2Suche in Google Scholar

[4] R. E. Barlow and F. Proschan, Mathematical Theory of Reliability, Classics Appl. Math. 17, Society for Industrial and Applied Mathematics, Philadelphia, 1996. 10.1137/1.9781611971194Suche in Google Scholar

[5] K. S. Bohra and S. B. Singh, Evaluating fuzzy system reliability using intuitionistic fuzzy Rayleigh lifetime distribution, Math. Eng. Sci. Aerospace 6 (2015), no. 2, 245–254. Suche in Google Scholar

[6] C. Carlsson and R. Fullér, Possibility for Decision, Stud. Fuzziness Soft Comput. 270, Springer, Berlin, 2011. 10.1007/978-3-642-22642-7Suche in Google Scholar

[7] H. Garg, M. Rani, S. P. Sharma and Y. Vishwakarma, Intuitionistic fuzzy optimization technique for solving multi-objective reliability optimization problems in interval environment, Expert Syst. Appl. 41 (2014), no. 7, 3157–3167. 10.1016/j.eswa.2013.11.014Suche in Google Scholar

[8] E. B. Jamkhaneh and S. Nadarajah, A new generalized intuitionistic fuzzy set, Hacet. J. Math. Stat. 44 (2015), no. 6, 1537–1551. Suche in Google Scholar

[9] W. Jianqiang and Z. Zhong, Aggregation operators on intuitionistic trapezoidal fuzzy number and its application to multi-criteria decision making problems, J. Syst. Eng. Electron. 20 (2009), no. 2, 321–326. Suche in Google Scholar

[10] M. Kumar, S. P. Yadav and S. Kumar, Fuzzy system reliability evaluation using time-dependent intuitionistic fuzzy set, Internat. J. Systems Sci. 44 (2013), no. 1, 50–66. 10.1080/00207721.2011.581393Suche in Google Scholar

[11] G. S. Mahapatra and B. S. Mahapatra, Intuitionistic fuzzy fault tree analysis using intuitionistic fuzzy numbers, Int. Math. Forum 5 (2010), no. 21–24, 1015–1024. Suche in Google Scholar

[12] G. S. Mahapatra and T. K. Roy, Reliability evaluation using triangular intuitionistic fuzzy numbers arithmetic operations, Int. J. Comput. Inform. Eng. 3 (2009), no. 2, 350–357. Suche in Google Scholar

[13] A. Mahmoodirad, T. Allahviranloo and S. Niroomand, A new effective solution method for fully intuitionistic fuzzy transportation problem, Soft Comput. 23 (2019), no. 12, 4521–4530. 10.1007/s00500-018-3115-zSuche in Google Scholar

[14] A. Mishra and A. Kumar, JMD method for transforming an unbalanced fully intuitionistic fuzzy transportation problem into a balanced fully intuitionistic fuzzy transportation problem, Soft Comput. 24 (2020), no. 20, 15639–15654. 10.1007/s00500-020-04889-6Suche in Google Scholar

[15] D. Pandey, S. K. Tyagi and V. Kumar, Reliability analysis of a series and parallel network using triangular intuitionistic fuzzy sets, Appl. Appl. Math. 6 (2011), no. 11, 1845–1855. Suche in Google Scholar

[16] B. P’ekala, P. Grochowalski and E. Szmidt, New transitivity of Atanassov’s intuitionistic fuzzy sets in a decision making model, Int. J. Appl. Math. Comput. Sci. 31 (2021), no. 4, 563–576. 10.34768/amcs-2021-0038Suche in Google Scholar

[17] V. K. Sharma and S. Dey, Estimation of reliability of multicomponent stress-strength inverted exponentiated Rayleigh model, J. Indust. Prod. Eng. 36 (2019), no. 3, 181–192. 10.1080/21681015.2019.1646032Suche in Google Scholar

[18] A. K. Shaw and T. K. Roy, Trapezoidal intuitionistic fuzzy number with some arithmetic operations and its application on reliability evaluation, Int. J. Math. Oper. Res. 5 (2013), no. 1, 55–73. 10.1504/IJMOR.2013.050512Suche in Google Scholar

[19] M. H. Shu, C. H. Cheng and J. R. Chang, Using intuitionistic fuzzy sets for fault-tree analysis on printed circuit board assembly, Microelectron. Reliab. 46 (2006), no. 12, 2139–2148. 10.1016/j.microrel.2006.01.007Suche in Google Scholar

[20] E. Szmidt and J. Kacprzyk, Amount of information and its reliability in the ranking of Atanassov’s intuitionistic fuzzy alternatives, Recent Advances in Decision Making, Springer, Berlin (2009), 7–19. 10.1007/978-3-642-02187-9_2Suche in Google Scholar

[21] I. A. Ushakov, A universal generating function, Soviet J. Comput. Syst. Sci. 24 (1986), no. 5, 118–129. Suche in Google Scholar

[22] R. R. Yager, Properties and applications of Pythagorean fuzzy sets, Imprecision and Uncertainty in Information Representation and Processing, Stud. Fuzziness Soft Comput. 332, Springer, Cham (2016), 119–136. 10.1007/978-3-319-26302-1_9Suche in Google Scholar

[23] W. Yang, S. T. Jhang, Z. W. Fu, Z. S. Xu and Z. M. Ma, A novel method to derive the intuitionistic fuzzy priority vectors from intuitionistic fuzzy preference relations, Soft Comput. 25 (2021), 147–159. 10.1007/s00500-020-05472-9Suche in Google Scholar

[24] L. A. Zadeh, Electrical engineering at the crossroads, IEEE Trans. Education 8 (1965), no. 2, 30–33. 10.1109/TE.1965.4321890Suche in Google Scholar

Received: 2025-02-04
Revised: 2025-10-28
Accepted: 2025-11-06
Published Online: 2025-11-19

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 23.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/eqc-2025-0010/html
Button zum nach oben scrollen