Startseite Wirtschaftswissenschaften The Marshall–Olkin Transmuted-G Family of Distributions
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The Marshall–Olkin Transmuted-G Family of Distributions

  • Ahmed Z. Afify ORCID logo , Haitham M. Yousof , Morad Alizadeh ORCID logo , Indranil Ghosh ORCID logo EMAIL logo , Samik Ray und Gamze Ozel
Veröffentlicht/Copyright: 6. August 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

We introduce a new family of univariate continuous distributions called the Marshall–Olkin transmuted-G family which extends the transmuted-G family pioneered by Shaw and Buckley (2007). Special models for the new family are provided. Some of its mathematical properties including quantile measure, explicit expressions for the ordinary and incomplete moments, generating function, Rényi and Shannon entropies, order statistics and probability weighted moments are derived. The estimation of the model parameters is performed by maximum likelihood. The flexibility of the proposed family is illustrated by means of two applications to real data sets.

MSC 2010: 60E; 62F

References

[1] A. Z. Afify, G. M. Cordeiro, H. M. Yousof, A. Saboor and E. M. M. Ortega, The Marshall–Olkin additive Weibull distribution with variable shapes for the hazard rate, Hacet. J. Math. Stat. 47 (2018), no. 2, 365–381. 10.15672/HJMS.201612618532Suche in Google Scholar

[2] A. Z. Afify, G. G. Hamedani, I. Ghosh, M. E. Mead, The transmuted Marshall–Olkin–Frechet distribution: Properties and applications, Int. J. Stat. Probab. 4 (2015), no. 4, 132–148. 10.5539/ijsp.v4n4p132Suche in Google Scholar

[3] A. Z. Afify, Z. M. Nofal and N. S. Butt, Transmuted complementary Weibull geometric distribution, Pak. J. Stat. Oper. Res. 10 (2014), no. 4, 435–454. 10.18187/pjsor.v10i4.836Suche in Google Scholar

[4] A. Z. Afify, Z. M. Nofal and A. E. H. N. Ebraheim, Exponentiated transmuted generalized Rayleigh distribution: A new four parameter Rayleigh distribution, Pak. J. Stat. Oper. Res. 11 (2015), no. 1, 115–134. 10.18187/pjsor.v11i1.873Suche in Google Scholar

[5] A. Z. Afify, Z. M. Nofal, H. M. Yousof, Y. M. El Gebaly and N. S. Butt, The transmuted Weibull Lomax distribution: Properties and application, Pak. J. Stat. Oper. Res. 11 (2015), no. 1, 135–152. 10.18187/pjsor.v11i1.956Suche in Google Scholar

[6] G. R. Aryal, Transmuted log-logistic distribution, J. Stat. Appl. Probab. 2 (2013), 11–20. 10.12785/jsap/020102Suche in Google Scholar

[7] G. R. Aryal and C. P. Tsokos, On the transmuted extreme value distribution with application, Nonlinear Anal. 71 (2009), no. 12, e1401–e1407. 10.1016/j.na.2009.01.168Suche in Google Scholar

[8] G. R. Aryal and C. P. Tsokos, Transmuted Weibull distribution: A generalization of the Weibull probability distribution, Eur. J. Pure Appl. Math. 4 (2011), no. 2, 89–102. Suche in Google Scholar

[9] S. K. Ashour and M. A. Eltehiwy, Transmuted exponentiated modified Weibull distribution, Internat. J. Basic Appl. Sci. 2 (2013), no. 3, 258–269. Suche in Google Scholar

[10] G. M. Cordeiro, E. M. M. Ortega and S. Nadarajah, The Kumaraswamy Weibull distribution with application to failure data, J. Franklin Inst. 347 (2010), no. 8, 1399–1429. 10.1016/j.jfranklin.2010.06.010Suche in Google Scholar

[11] I. Elbatal, Transmuted modified inverse Weibull distribution: A generalization of the modified inverse Weibull probability distribution, Internat. J. Math. Arch. 4 (2013), 117–129. Suche in Google Scholar

[12] M. S. Khan and R. King, Transmuted modified Weibull distribution: A generalization of the modified Weibull probability distribution, Eur. J. Pure Appl. Math. 6 (2013), no. 1, 66–88. Suche in Google Scholar

[13] C. Lee, F. Famoye and O. Olumolade, Beta-Weibull distribution: some properties and applications to censored data, J. Mod. Appl. Stat. Methods 6 (2007), no. 1, 173–186. 10.22237/jmasm/1177992960Suche in Google Scholar

[14] A. W. Marshall and I. Olkin, A new method for adding a parameter to a family of distributions with application to the exponential and Weibull families, Biometrika 84 (1997), no. 3, 641–652. 10.1093/biomet/84.3.641Suche in Google Scholar

[15] Z. M. Nofal, A. Z. Afify, H. M. Yousof and G. M. Cordeiro, The generalized transmuted-G family of distributions, Comm. Statist. Theory Methods 46 (2017), no. 8, 4119–4136. 10.1080/03610926.2015.1078478Suche in Google Scholar

[16] D. N. Prabhakar Murthy, M. Xie and R. Jiang, Weibull Models, Wiley Ser. Probab. Stat., Wiley-Interscience, Hoboken, 2004. 10.1002/047147326XSuche in Google Scholar

[17] W. T. Shaw and I. R. C. Buckley, The alchemy of probability distributions: Beyond Gram–Charlier & Cornish–Fisher expansions, and skew-normal or kurtotic-normal distributions, preprint (2007), https://arxiv.org/abs/0901.0434. Suche in Google Scholar

Received: 2020-06-08
Accepted: 2020-07-06
Published Online: 2020-08-06
Published in Print: 2020-12-01

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 6.2.2026 von https://www.degruyterbrill.com/document/doi/10.1515/eqc-2020-0009/pdf
Button zum nach oben scrollen