Startseite New bounds for the nonlinearity of PN functions and APN functions over finite fields
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

New bounds for the nonlinearity of PN functions and APN functions over finite fields

  • Vladimir G. Ryabov EMAIL logo
Veröffentlicht/Copyright: 25. April 2025
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The nonlinearity of a vectorial function over a finite field is defined in the paper as the Hamming distance from the function to the set of affine mappings in the space of values of all vectorial functions. For an arbitrary field of q elements we derive lower bounds for the nonlinearity of PN and APN functions in n variables in the form qnqn32221 and qn2qn72221, respectively. These bounds improve the estimates obtained earlier in the Boolean case. It is shown that the nonlinearity of such functions can be estimated from above by qnn − 1. For q = 2, 3, 4 the exact values of the nonlinearity of PN and APN functions of low dimension are obtained.


Originally published in Diskretnaya Matematika (2023) 35, №4, 18–45 (in Russian).


References

[1] Glukhov M. M., “On the approximation of discrete functions by linear functions”, Matematicheskie voprosy kriptografii, 7:4 (2016), 29–50 (in Russian).10.4213/mvk202Suche in Google Scholar

[2] Gorshkov S. P., Dvinyaninov A. V., “Lower and upper bounds for the affinity order of transformations of Boolean vector spaces”, Prikladnaya diskretnaya matematika, 2(20) (2013), 14–18 (in Russian).10.17223/20710410/20/2Suche in Google Scholar

[3] Ryabov V. G., “Maximally nonlinear functions over finite fields”, Discrete Math. Appl., 33:1 (2023), 41–53.10.1515/dma-2023-0005Suche in Google Scholar

[4] Ryabov V. G., “Approximation of vectorial functions over finite fields and their restrictions to linear manifolds by affine analogues”, Discrete Math. Appl., 33:6 (2023), 387–403.10.1515/dma-2023-0035Suche in Google Scholar

[5] Ryabov V. G., “On the question on the approximation of vectorial functions over finite fields by affine analogues”, Matematicheskie voprosy kriptografii, 13:4 (2022), 125–146 (in Russian).10.4213/mvk426Suche in Google Scholar

[6] Brinkmann M., Extended affine and CCZ equivalence up to dimension 4, Cryptology ePrint Archive, Paper 2019/316, https://eprint.iacr.org/2019/316, 2019.Suche in Google Scholar

[7] Brinkmann M., Leander G., “On the classification of APN functions up to dimension five”, Des., Codes, Cryptogr., 49:1–3 (2008), 273–288.10.1007/s10623-008-9194-6Suche in Google Scholar

[8] Carlet C., “Characterizations of the differential uniformity of vectorial functions by the Walsh transform”, IEEE Trans. Inf. Theory, 64:9 (2018), 6443–6453.10.1109/TIT.2017.2761392Suche in Google Scholar

[9] Carlet C., Boolean Functions for Cryptography and Coding Theory, Cambridge Univ. Press, 2021, 574 pp.10.1017/9781108606806Suche in Google Scholar

[10] Carlet C., “Bounds on the nonlinearity of differentially uniform functions by means of their image set size, and on their distance to affine functions”, IEEE Trans. Inf. Theory, 67:12 (2021), 8325–8334.10.1109/TIT.2021.3114958Suche in Google Scholar

[11] Chen L., Fu F., “On the nonlinearity of multi–output Boolean functions”, Acta Sci. Natur. Univ. Nankai., 34:4 (2001), 28–33.Suche in Google Scholar

[12] Dembowski P., Ostrom T. G., “Planes of order n with collineation group of order n2”, Math. Zeitschrift, 103:3 (1968), 239–258.10.1007/BF01111042Suche in Google Scholar

[13] Liu J., Chen L., “On nonlinearity of the second type of multi-output Boolean functions”, Chinese J. Eng. Math., 31:1 (2014), 9–22.Suche in Google Scholar

[14] Liu J., Mesnager S., Chen L., “On the nonlinearity of S-boxes and linear codes”, Cryptogr. Commun., 9:3 (2017), 345–361.10.1007/s12095-015-0176-zSuche in Google Scholar

[15] Nyberg K., “Constructions of bent functions and difference sets”, EUROCRYPT 1990, Lect. Notes Comput. Sci., 473, 1991, 151–160.10.1007/3-540-46877-3_13Suche in Google Scholar

[16] Nyberg K., “On the construction of highly nonlinear permutations”, EUROCRYPT 1992, Lect. Notes Comput. Sci., 658, 1993, 92–98.10.1007/3-540-47555-9_8Suche in Google Scholar

[17] Nyberg K., “Differentially uniform mappings for cryptography”, EUROCRYPT 1993, Lect. Notes Comput. Sci., 765, 1994, 55–64.10.1007/3-540-48285-7_6Suche in Google Scholar

[18] Su M., Zha Z., Xu Z., “Another class of perfect nonlinear polynomial functions”, Math. Probl. Eng., 2013:Article ID 917507 (2013), 1–5.10.1155/2013/917507Suche in Google Scholar

Received: 2023-03-29
Published Online: 2025-04-25
Published in Print: 2025-04-28

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 6.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/dma-2025-0007/html
Button zum nach oben scrollen