Startseite Hadamard square of series connected linear codes
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Hadamard square of series connected linear codes

  • Ivan V. Chizhov EMAIL logo
Veröffentlicht/Copyright: 28. April 2025
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Series connected codes are generated by matrices obtained by series connected generating matrices of other linear codes. We find an estimate for the probability that the Hadamard square of series connected random linear codes coincides with the Cartesian product of the Hadamard squares of the linear codes involved in the connection.


Originally published in Diskretnaya Matematika (2023) 35, №3, 100–124 (in Russian).


7 Acknowledgment

The authors is greatly indebted to G. A. Karpunin for valuable comments and suggestions that considerably improved the presentation, for his interest in this study, for discussion of the results obtained, and for his enormous work in searching typos, errors, and inaccuracies in the proofs.

References

[1] Pellikaan R., “On decoding by error location and dependent sets of error positions”, Discrete Math., 106–107 (1992), 369–381.10.1016/0012-365X(92)90567-YSuche in Google Scholar

[2] Chen H., Cramer R., “Algebraic geometric secret sharing schemes and secure multi-party computations over small fields”, CRYPTO 2006, Lect. Notes Comput. Sci., 4117, 2006, 521–536.10.1007/11818175_31Suche in Google Scholar

[3] Borodin M. A., Chizhov I. V., “Effective attack on the McEliece cryptosystem based on Reed-Muller codes”, Discrete Math. Appl., 24:5 (2014), 273–280.10.1515/dma-2014-0024Suche in Google Scholar

[4] Wieschebrink C., “Cryptanalysis of the Niederreiter public key scheme based on GRS subcodes”, PQCrypto 2010, Lect. Notes Comput. Sci., 6061, 2010, 61–72.10.1007/978-3-642-12929-2_5Suche in Google Scholar

[5] Couvreur C., Gaborit P., Gauthier-Umaña V., Otmani A., Tillich J.-P., “Distinguisher-based attacks on public-key cryptosystems using Reed – Solomon codes”, Des., Codes Cryptogr., 73:2 (2014), 641–666.10.1007/s10623-014-9967-zSuche in Google Scholar

[6] Couvreur A., Márquez-Corbella I., Pellikaan R., “Cryptanalysis of public-key cryptosystems that use subcodes of algebraic geometry codes”, Coding Theory and Applications, CIM Ser. Math. Sci., 3, 2015, 133–140.10.1007/978-3-319-17296-5_13Suche in Google Scholar

[7] Couvreur A., Otmani A., Tillich J.-P., “Polynomial time attack on wild McEliece over quadratic extensions”, IEEE Trans. Inf. Theory, 63:1 (2017), 404–427.10.1109/TIT.2016.2574841Suche in Google Scholar

[8] Couvreur A., Otmani A., Tillich J.-P., Gauthier-Umaña V., “A polynomial-time attack on the BBCRS scheme”, PKC 2015, Lect. Notes Comput. Sci., 9020, 2015, 175–193.10.1007/978-3-662-46447-2_8Suche in Google Scholar

[9] Otmani A., Kalachi H. T., “Square code attack on a modified Sidelnikov cryptosystem”, C2SI 2015, Lect. Notes Comput. Sci., 9084, 2015, 173–183.10.1007/978-3-319-18681-8_14Suche in Google Scholar

[10] Faugére J.-C., Gauthier-Umaña V., Otmani A., Perret L., Tillich J.-P., “A distinguisher for high-rate McEliece cryptosystems”, IEEE Trans. Inf. Theory, 59:10 (2013), 6830–6844.10.1109/TIT.2013.2272036Suche in Google Scholar

[11] Cascudo I., Cramer R., Mirandola D., Zémor G., “Squares of random linear codes”, IEEE Trans. Inf. Theory, 61:3 (2015), 1159–1173.10.1109/TIT.2015.2393251Suche in Google Scholar

[12] Bardet M., Bertin M., Couvreur A., Otmani A., “Practical algebraic attack on DAGS”, CBC 2019, Lect. Notes Comput. Sci., 11666, 2019, 86–101.10.1007/978-3-030-25922-8_5Suche in Google Scholar

[13] Chizhov I. V., Koniukhov S. A., Davletshina A. M., “Effective structural attack on McEliece-Sidelnikov public-key cryptosystem”, Int. J. Open Inf. Technol., 8:7 (2020), 1–10 (in Russian).Suche in Google Scholar

[14] Chizhov I. V., Popova E. A., “Structural attack on McEliece-Sidelnikov type public-key cryptosystem based on a combination of random codes with Reed-Muller codes”, Int. J. Open Inf. Technol., 8:6 (2020), 24–33 (in Russian).Suche in Google Scholar

[15] Deundyak V. M., Kosolapov Y. V., “On the strength of asymmetric code cryptosystems based on the merging of generating matrices of linear codes”, XVI Int. Symp. “Problems of Redundancy in Information and Control Systems” (REDUNDANCY), 2019, 143–148.10.1109/REDUNDANCY48165.2019.9003319Suche in Google Scholar

[16] Hall J. I., Notes on Coding Theory. Chapter 3: Linear Codes, Dept. Mathematics, Michigan State Univ., 2015, users.math.msu.edu/users/halljo/classes/CODENOTES/Linear.pdf.Suche in Google Scholar

[17] Chizhov I. V., “Hadamard square and generalized minimal distance of the Reed code – Maller code of order 2”, Discrete mathematics, 35:1 (2023), 128–152 (in Russian).10.1515/dma-2025-0002Suche in Google Scholar

[18] Sidelnikov V. M., “A public-key cryptosystem based on binary Reed-Muller codes”, Discrete Math. Appl., 4:3 (1994), 191–207.10.1515/dma.1994.4.3.191Suche in Google Scholar

[19] Egorova E., Kabatiansky G., Krouk E., Tavernier C., “A new code-based public-key cryptosystem resistant to quantum computer attacks”, J. Phys. Conf. Ser., 1163:012061 (2019).10.1088/1742-6596/1163/1/012061Suche in Google Scholar

Received: 2023-01-23
Published Online: 2025-04-28
Published in Print: 2025-04-28

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 7.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/dma-2025-0006/html
Button zum nach oben scrollen