Startseite On the prospective minimum of the random walk conditioned to stay nonnegative
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

On the prospective minimum of the random walk conditioned to stay nonnegative

  • Vladimir A. Vatutin EMAIL logo und Elena E. Dyakonova
Veröffentlicht/Copyright: 10. Dezember 2024
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Let

S0=0,Sn=X1++Xn,n1,

be a random walk whose increments belong without centering to the domain of attraction of a stable law with scaling constants an that provide convergence as n → ∞ of the distributions of the sequence {Sn/an, n = 1, 2, …} to this stable law. Let Lr,n = minrmn Sm be the minimum of the random walk on the interval [r, n]. It is shown that

limr,k,nPLr,nyak|Sntak,L0,n0,t0,,

can have five different expressions, the forms of which depend on the relationships between the parameters r, k and n.


Originally published in Diskretnaya Matematika (2024) 36, №3, 50–79 (in Russian).


Funding statement: This work was supported by the Russian Science Foundation under grant no.24-11-00037 https://rscf.ru/en/project/24-11-00037/

Acknowledgment

In conclusion, we would like to thank an anonymous reviewer for the constructive comments that allow us to improve the presentation of results of the paper.

References

[1] Afanasyev V. I., Geiger J., Kersting G., Vatutin, V. A. “Criticality for branching processes in random environment”, Ann. Probab., 33:2 (2005), 645–673.10.1214/009117904000000928Suche in Google Scholar

[2] Bertoin J., Doney R. A., “On conditioning a random walk to stay nonnegative”, Ann. Probab., 22:4 (1994), 2152–2167.10.1214/aop/1176988497Suche in Google Scholar

[3] Bolthausen E., “On a functional central limit theorem for random walks conditioned to stay positive”, Ann. Probab., 4:3 (1976), 480–485.10.1214/aop/1176996098Suche in Google Scholar

[4] Borovkov K.A., Vatutin V.A., “Reduced critical branching processes in random environment”, Stochastic Process. Appl., 71:2 (1997), 225–240.10.1016/S0304-4149(97)00074-4Suche in Google Scholar

[5] Chaumont L., “Excursion normalisée, méandre et pont pour les processus de Lévy stables”, Bull. Sci. Math., 121 (1997), 377–403.Suche in Google Scholar

[6] Caravenna F., “A local limit theorem for random walks conditioned to stay positive”, Probab.Theory Related Fields, 133 (2005), 508–530.10.1007/s00440-005-0444-5Suche in Google Scholar

[7] Caravenna F., Chaumont L. Invariance principles for random walks conditioned to stay positive, Ann. Ins. H. Poincare Probab. Statist., 44 (2008), 170–190.10.1214/07-AIHP119Suche in Google Scholar

[8] Caravenna F., Chaumont L., “An invariance principle for random walk bridges conditioned to stay positive”, Electron. J. Probab., 18:60 (2013), 1–32.10.1214/EJP.v18-2362Suche in Google Scholar

[9] Chaumont L., Doney R. A., “Invariance principles for local times at the maximum of random walks and Levy processes”, Ann. Probab., 38 (2010), 1368–1389.10.1214/09-AOP512Suche in Google Scholar

[10] Doney R.A., “Local behavior of first passage probabilities”, Probab. Theory Relat. Fields, 152:3-4 (2012), 559–588.10.1007/s00440-010-0330-7Suche in Google Scholar

[11] Durrett R., “Conditioned limit theorems for some null recurrent Markov chains”, Ann. Probab., 6 (1978), 798–828.10.1214/aop/1176995430Suche in Google Scholar

[12] Feller W., An Introduction to Probability Theory and Its Applications, 2, 2nd edition, Wiley, New York, 1971.Suche in Google Scholar

[13] Gnedenko B. V., Kolmogorov A. N., Limit distributions for sums of independent random variables, Addison-Wesley, 1954.Suche in Google Scholar

[14] Iglehart D. L., “Functional central limit theorems for random walks conditioned to stay positive”, Ann. Probab., 2 (1974), 608–619.10.1214/aop/1176996607Suche in Google Scholar

[15] Ito K., McKean H. P. Jr., Diffusion Processes and their Sample Paths, Springer Science & Business Media, 2012, 323 pp.Suche in Google Scholar

[16] Rogozin B.A., “On the distrbution of the first ladder moment and height and fluctuations of a random walk”, Theory Probab. Appl., 16 (1971), 575–595.10.1137/1116067Suche in Google Scholar

[17] Sinai Ya. G., “On the distribution of the first positive sum for a sequence of independent random variables”, Theory Probab. Appl., 2 (1957), 122–129.10.1137/1102009Suche in Google Scholar

[18] Urbe Bravo G., “Bridges of Levy processes conditioned to stay positive”, Bernoulli, 20:1 (2014), 190–206.10.3150/12-BEJ481Suche in Google Scholar

[19] Vatutin V. A., “Reduced branching processes in random environment: the critical case”, Theory Probab. Appl., 47:1 (2003), 99–113.10.1137/S0040585X97979421Suche in Google Scholar

[20] Vatutin V., Dyakonova E., “Critical branching processes evolving in an unfavorable random environment”, Discrete Math. Appl., 34:3 (2024), 175–186.Suche in Google Scholar

[21] Vatutin V. A., Dong G., Dyakonova E. E., “Random walks conditioned to stay non-negative and branching processes in non-favorable random environment”, Sb. Math., 214:11 (2023), 1501–1533.10.4213/sm9908eSuche in Google Scholar

[22] Vatutin V.A., Wachtel V., “Local probabilities for random walks conditioned to stay positive”, Probab. Theory Related Fields, 143 (2009), 177–217.10.1007/s00440-007-0124-8Suche in Google Scholar

Received: 2024-06-20
Published Online: 2024-12-10
Published in Print: 2024-12-15

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/dma-2024-0030/pdf
Button zum nach oben scrollen