Startseite Resistance distance and Kirchhoff index of two kinds of double join operations on graphs
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Resistance distance and Kirchhoff index of two kinds of double join operations on graphs

  • Weizhong Wang und Tingyan Ma
Veröffentlicht/Copyright: 17. Oktober 2024
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Let G be a connected graph. The resistance distance between any two vertices of G is defined to be the network effective resistance between them if each edge of G is replaced by a unit resistor. The Kirchhoff index of G is the sum of resistance distances between all pairs of vertices of G. In this paper, we determine the resistance distance and Kirchhoff index of the subdivision double join GS ∨ {G1, G2} and R-graph double join GR ∨ {G1, G2} for a regular graph G and two arbitrary graphs G1, G2, respectively.


Originally published in Diskretnaya Matematika (2024) 36, №3, 29–49 (in Russian).


Funding statement: This research was supported by the National Natural Science Foundation of China (Nos. 11561042, 11961040) and the Natural Science Foundation of Gansu Province (No. 20JR5RA418).

References

[1] Bonchev D., Balaban A. T., Liu X., Klein D. J., “Molecular cyclicity and centricity of polycyclic graphs. I. Cyclicity based on resistance distances or reciprocal distances”, Int. J. Quantum Chem., 50:1 (1994), 1–20.10.1002/qua.560500102Suche in Google Scholar

[2] Bapat R. B., Graphs and Matrices, Springer, 171 pp.Suche in Google Scholar

[3] Bapat R. B., Gupta S., “Resistance distance in wheels and fans”, Indian J. Pure Appl. Math., 41:1 (2010), 1–13.10.1007/s13226-010-0004-2Suche in Google Scholar

[4] Bapat R. B., Gutman I., Xiao W., “A simple method for computing resistance distance”, Z. Naturforsch. A, 58:9-10 (2003), 494–498.10.1515/zna-2003-9-1003Suche in Google Scholar

[5] Bu C. J., Sun L. Z., Zhou J., Wei Y. M., “A note on block representations of the group inverse of Laplacian matrices”, Electron. J. Linear Algebra, 23 (2012), 866–876.10.13001/1081-3810.1562Suche in Google Scholar

[6] Bu C. J., Yan B., Zhou X. Q., Zhou J., “Resistance distance in subdivision-vertex join and subdivision-edge join of graphs”, Linear Algebra Appl., 458 (2014), 454–462.10.1016/j.laa.2014.06.018Suche in Google Scholar

[7] Cardoso D. M., Díaz R. C., Rojo O., “Distance matrices on the H-join of graphs: A general result and applications”, Linear Algebra Appl., 559 (2018), 34–53.10.1016/j.laa.2018.08.024Suche in Google Scholar

[8] Cardoso D. M., de Freitas M. A. A., Martins E. A., Robbiano M., “Spectra of graphs obtained by a generalization of the join graph operation”, Discrete Math., 313:5 (2013), 733–741.10.1016/j.disc.2012.10.016Suche in Google Scholar

[9] Cardoso D. M., Martins E. A., Robbiano M., Rojo O., “Eigenvalues of a H-generalized join graph operation constrained by vertex subsets”, Linear Algebra Appl., 438:8 (2013), 3278–3290.10.1016/j.laa.2012.12.004Suche in Google Scholar

[10] Chen H., “Random walks and the effective resistance sum rules”, Discrete Appl. Math., 158:15 (2010), 1691–1700.10.1016/j.dam.2010.05.020Suche in Google Scholar

[11] Das A., Panigrahi P., “Normalized Laplacian spectrum of some subdivision-joins and R-joins of two regular graphs”, AKCE Int. J. Graphs Comb., 15:3 (2018), 261–270.10.1016/j.akcej.2017.10.006Suche in Google Scholar

[12] Gutman I., Mohar B., “The quasi-Wiener and the Kirchhoff indices coincide”, J. Chem. Inf. Comput. Sci., 36:5 (1996), 982–985.10.1021/ci960007tSuche in Google Scholar

[13] Indulal G., “Spectrum of two new joins of graphs and infinite families of integral graphs”, Kragujevac J. Math., 36:1 (2012), 133–139.Suche in Google Scholar

[14] Kirkland S. J., Neumann M., “The M-matrix group generalized inverse problem for weighted trees”, SIAM J. Matrix Anal. Appl., 19:1 (1998), 226–234.10.1137/S0895479896304927Suche in Google Scholar

[15] Klein D. J., Randić M., “Resistance distance”, J. Math. Chem., 12:1 (1993), 81–95.10.1007/BF01164627Suche in Google Scholar

[16] Liu Q., Liu J. B., Cao J. D., “The Laplacian polynomial and Kirchhoff index of graphs based on R-graphs”, Neurocomputing, 177 (2016), 441–446.10.1016/j.neucom.2015.11.060Suche in Google Scholar

[17] Liu Q., Wang W. Z., “Resistance distance and Kirchhoff index in subdivision-vertex and subdivision-edge neighbourhood coronae”, Ars Comb., 130 (2017), 29–41.Suche in Google Scholar

[18] Liu X. G., Zhou J., Bu C. J., “Resistance distance and Kirchhoff index of R-vertex join and R-edge join of two graphs”, Discrete Appl. Math., 187 (2015), 130–139.10.1016/j.dam.2015.02.021Suche in Google Scholar

[19] Liu X. G., Zhang Z. H., “Spectra of subdivision-vertex join and subdivision-edge join of two graphs”, Bull. Malays. Math. Sci. Soc., 42 (2019), 15–31.10.1007/s40840-017-0466-zSuche in Google Scholar

[20] Sun L. Z., Wang W. Z., Zhou J., Bu C. J., “Some results on resistance distances and resistance matrices”, Linear Multilinear Algebra, 63:3 (2015), 523–533.10.1080/03081087.2013.877011Suche in Google Scholar

[21] Tian G. X., He J. X., Cui S. Y., “On the Laplacian spectra of some double join operations of graphs”, Bull. Malays. Math. Sci. Soc., 42 (2019), 1555–1566.10.1007/s40840-017-0566-9Suche in Google Scholar

[22] Wang W. Z., Yang D., Luo Y. F., “The Laplacian polynomial and Kirchhoff index of graphs derived from regular graphs”, Discrete Appl. Math., 161:18 (2013), 3063–3071.10.1016/j.dam.2013.06.010Suche in Google Scholar

[23] Yang Y. J., Klein D. J., “Resistance distance-based graph invariants of subdivisions and triangulations of graphs”, Discrete Appl. Math., 181 (2015), 260–274.10.1016/j.dam.2014.08.039Suche in Google Scholar

[24] Yang Y. J., “The Kirchhoff index of subdivisions of graphs”, Discrete Appl. Math., 171 (2014), 153–157.10.1016/j.dam.2014.02.015Suche in Google Scholar

[25] Yang Y. J., Zhang H. P., “Some rules on resistance distance with applications”, J. Phys. A: Math. Theor., 41:44 (2008), 445203.10.1088/1751-8113/41/44/445203Suche in Google Scholar

[26] Zhu H. Y., Klein D. J., Lukovits I., “Extensions of the Wiener number”, J. Chem. Inf. Comput. Sci., 36:3 (1996), 420–428.10.1021/ci950116sSuche in Google Scholar

[27] Zhang F. Z., The Schur Complement and Its Applications, Numer. Meth. Algorithms, 4, Springer, 2005, xvi + 295 pp.10.1007/b105056Suche in Google Scholar

[28] Zhang H. P., Yang Y. J., Li C. W., “Kirchhoff index of composite graphs”, Discrete Appl. Math., 157:13 (2009), 2918–2927.10.1016/j.dam.2009.03.007Suche in Google Scholar

[29] Zhang H. P., Yang Y. J., “Resistance distance and Kirchhoff index in circulant graphs”, Int. J. Quantum Chem., 107:2 (2007), 330–339.10.1002/qua.21068Suche in Google Scholar

Received: 2022-04-04
Published Online: 2024-10-17
Published in Print: 2024-10-28

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/dma-2024-0027/pdf
Button zum nach oben scrollen