Startseite Realization of even permutations of even degree by products of four involutions without fixed points
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Realization of even permutations of even degree by products of four involutions without fixed points

  • Fedor M. Malyshev EMAIL logo
Veröffentlicht/Copyright: 17. Oktober 2024
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

We consider representations of an arbitrary permutation π of degree 2n, n ⩾ 3, by products of the so-called (2n)-permutations (any cycle of such a permutation has length 2). We show that any even permutation is represented by the product of four (2n)-permutations. Products of three (2n)-permutations cannot represent all even permutations. Any odd permutation is realized (for odd n) by a product of five (2n)-permutations.


Originally published in Diskretnaya Matematika (2023) 35, №2, 18–33 (in Russian).


References

[1] Bourbaki N., Groupes et Algèbres de Lie. Chapitres 4, 5 et 6, Hermann, Paris, 1968, 282 pp.Suche in Google Scholar

[2] Artin E., Geometric algebra, M.: Nauka, 1969 (in Russian), 288 pp.Suche in Google Scholar

[3] Halmos P. R., Kakutani S., “Products of symmetries”, Bull. Amer. Math. Soc., 64 (1958), 77–78.10.1090/S0002-9904-1958-10156-1Suche in Google Scholar

[4] Radjavi H., “Products of Hermitian matrices and symmetries”, Proc. Amer. Math. Soc., 21 (1969), 369–372.10.1090/S0002-9939-1969-0240116-9Suche in Google Scholar

[5] Sampson A. R., “A note on a new matrix decomposition”, Linear Algebra Appl., 8 (1974), 459–463.10.1016/0024-3795(74)90079-2Suche in Google Scholar

[6] Waterhouse W. C., “Factoring unimodular matrices”, Advanced Problem 5876, Solution, Am. Math. Mon., 81 (1974), 1035.10.2307/2319325Suche in Google Scholar

[7] Gustafson W. H., Halmos P. R., “Products of involutions”, Linear Algebra Appl., 13:1–2 (1976), 157–162.10.1016/0024-3795(76)90054-9Suche in Google Scholar

[8] Moran G., “Permutations as products of k conjugate involutions”, J. Comb. Theory Ser. A., 19:2 (1975), 240–242.10.1016/S0097-3165(75)80015-XSuche in Google Scholar

[9] Borel A., Carter R., Curtis C. W., Iwahori N., Springer T. A., Steinberg R., Seminar on Algebraic Groups and Related Finite Groups, Lect. Notes Math., 131, Springer, 1970, 326 pp.10.1007/BFb0081541Suche in Google Scholar

[10] Petrov N. T., “On the length of simple groups”, Sov. Math. Dokl., 14 (1973), 127–131.Suche in Google Scholar

[11] Dénes J., “The representation of a permutation as the product of a minimal number of transpositions, and its connection with the theory of graphs”, Publ. Math. Inst. Hungar. Acad. Sci., 4 (1959), 63–70.Suche in Google Scholar

[12] Pikar S., “On bases of the symmetric group”, Kiberneticheskiy sb. Novaya seriya, 1, M.: Mir, 1965, 7–34 (in Russian).Suche in Google Scholar

[13] Kapelmakher V. L., Lisovets V. A., “Sequential generation of substitutions by means of transposition basis”, Kibernetika, 3 (1975), 17–21 (in Russian).Suche in Google Scholar

[14] Sushchanskiy V. I., Voskanyan R. A., “On systems of generating symmetric and alternating groups consisting of cycles of the same length”, Questions of group theory and homological algebra, Yaroslavl, 1985, 43–49 (in Russian).Suche in Google Scholar

[15] Zubov A. Yu., “On the representation of substitutions as products ofa transposition and a full cycle”, J. Math. Sci., 166:6 (2010), 710–724.10.1007/s10958-010-9887-zSuche in Google Scholar

[16] Lugo M., Profiles of large combinatorial structures, PhD Thesis, Univ. Pensylvania, 2010.Suche in Google Scholar

[17] Zubov A. Yu., “Circular inversions of permutations and their use in sorting problems”, Prikladnaya diskret. matem., 31:1 (2016), 13–30 (in Russian).10.17223/20710410/31/2Suche in Google Scholar

[18] Mikhailov V. G., “The number of decomposition of random permutation into the product of two involutions with given cycle in one of multipliers”, Matematicheskie Voprosy Kriptografii, 8:1 (2017), 81–94.10.4213/mvk216Suche in Google Scholar

[19] Bugay L., “Some involutions which generate the finite symmetric group”, Math. Sci. Appl. E-Notes, 8:1 (2020), 25–28.10.36753/mathenot.608443Suche in Google Scholar

Received: 2022-07-10
Published Online: 2024-10-17
Published in Print: 2024-10-28

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/dma-2024-0023/html
Button zum nach oben scrollen